
Fetch Robotics
Release Melodic

Fetch Robotics Inc

Jul 16, 2020





CONTENTS

1 Introduction 3
1.1 Before you Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Safety 5
2.1 Safety Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Design Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 General Usage Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Warning Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Getting Started 9
3.1 What’s In Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Running Fetch and Freight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Robot Hardware Overview 19
4.1 Mechanism Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Mechanical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Electrical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Motion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Sensor Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Computer Overview and Configuration 31
5.1 Default User Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Creating User Accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Upstart Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 Log Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.7 Speakers and Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Care And Feeding 35
6.1 Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Updating Your Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Re-Setting up apt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.5 Cleaning Your Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 ROS Melodic + Ubuntu 18.04 39
7.1 Known issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Upgrading Your Robot to ROS Melodic + Ubuntu 18.04 . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 Post-install Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4 Compatibility of Other Computers Used with the Robot . . . . . . . . . . . . . . . . . . . . . . . . 46

i



7.5 Not Supported: Upgrading from 14.04 to 18.04 (via 16.04) . . . . . . . . . . . . . . . . . . . . . . . 47
7.6 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Tutorials 49
8.1 Tutorial: Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2 Tutorial: Gazebo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.3 Tutorial: Robot Teleop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.4 Tutorial: Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.5 Tutorial: Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.6 Tutorial: Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.7 Tutorial: Auto Docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.8 Tutorial: Calibrating Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.9 Tutorial: Fetch Programming by Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9 Other 77
9.1 API Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.2 Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.3 Frequently Asked Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.4 Issues and Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10 Legal 91
10.1 Notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.2 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.3 Indices and tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

ii



Fetch Robotics, Release Melodic

This manual can also be downloaded as a PDF.

CONTENTS 1

http://docs.fetchrobotics.com/FetchRobotics.pdf


Fetch Robotics, Release Melodic

2 CONTENTS



CHAPTER

ONE

INTRODUCTION

This manual is intended to help users successfully install, use, and develop code on Fetch and Freight Research Edition
robots. The software installed on both robots is based on ROS. Please visit ros.org to learn more about ROS.

All users should read and become familiar with the safe operating procedures set out in Safety Section before operating
a robot.

If you are setting up Fetch or Freight for the first time please see the tutorial videos for unboxing Fetch and Freight to
learn how to properly unpackage and setup the robots for the first time.

1.1 Before you Start

Before getting started, below is an overview of what you need to use and operate Fetch and Freight safely.

• Fetch and Freight Safety

• Read Safety Section in its entirety before using either robot.

• Safe Environment

• Only operate Fetch and Freight in an environment free of hazards. Specifically, stairways and large drop offs
can cause personal injury and extreme damage. Avoid dangerous objects, sharp objects (such as knives), fire
sources, or hazardous chemicals. A robot with a knife or hot object is inherently dangerous.

• Space

• Make sure that there is enough space for Fetch and Freight to drive around and perform tasks. Both Fetch and
Freight are designed to operate in ADA-compliant environments (Americans with Disabilities Act).

• Development Tools

• To connect with Fetch and Freight, a laptop or desktop computer is needed. Ideally Fetch and Freight can
connect to a wireless network but users can also directly to Fetch or Freight via the Ethernet port on each robot.

• Linux

• Familiarity with the Linux command-line is strongly recommended. The computers in both Fetch and Freight
have Ubuntu Linux installed. Tasks can be performed by logging in remotely by using ssh or other similar tool.
Users can also directly plug in a display, mouse, and keyboard to the access panels on Fetch and Freight.

• Electrical

• Fetch and Freight charge using a power brick that uses a standard 120VAC or 220VAC power outlet.

• ROS and Fetch and Freight

• Fetch and Freight R&D software is based on ROS. Completing the beginner tutorials will help users understand
how to operate and write applications for the Fetch and Freight.

3



Fetch Robotics, Release Melodic

• Fetch and Freight Support

• Please visit the Fetch Robotics support portal at http://support.fetchrobotics.com and login to review service in-
formation, modularity specifications, important safety updates, and submit hardware or software support tickets
for your robot.

4 Chapter 1. Introduction

http://support.fetchrobotics.com


CHAPTER

TWO

SAFETY

Safety is extremely important to Fetch Robotics. Safe operation of robots is important yet challenging and it is im-
portant to remember that safety is a continual process that is shared by the robot designer, operator, and administrator.
The following section provides an overview of the issues, safety-related design features, and a basic set of guidelines
to support safety when using the Fetch and Freight R&D robots.

2.1 Safety Overview

When operating Fetch and Freight R&D robots users should always be conscious of safety. Remember the robots are
heavy pieces of equipment and have moving parts. As the robots travel through an environment they can carry and
manipulate a wide variety of objects. Since the Fetch & Freight R&D robots are for applications development, their
moves and actions may not be entirely predictable. Both the Fetch and Freight robots can cause significant damage if
they fall on or run into a person. There are also several ways that the robots can pinch, grab, or twist fingers or other
body parts (these regions are labeled). Fetch can also manipulate dangerous objects and knock over heavy objects.
People should always be cautious and attentive around Fetch and Freight R&D robots.

2.2 Design Features

While retaining the power of a R&D platform, both the hardware and software of Fetch and Freight are designed to
minimize risk. The exterior of both Fetch and Freight clearly mark regions that could pinch or injure while mechanism
is in motion or being moved by hand. Both Fetch and Freight have emergency stop buttons in case there is a need to
immediately stop the motion of the robot.

In software, low-level safety limits have been incorporated to limit motor current, motor velocity, range of joint motion,
and trajectory deviations. High-level applications also integrate the various on-board sensors to avoid obstacles when
navigating or moving the arm.

These design features help make Fetch and Freight more robust. However a R&D robot is never absolutely safe.
The application developers’ safety, as well as the safety of others, depends on the developers’ constant attention. It is
important for the user to be aware of potential dangers and learn to anticipate and prevent problems.

5



Fetch Robotics, Release Melodic

2.3 General Usage Guidelines

While many guidelines for safe use of a robot stem from common sense, a basic set is listed below. It is important to
follow these guidelines, but please note that these guidelines alone do not guarantee safety, only reduce risk.

• Before operating or working with a Fetch or Freight each user must:

• Watch the safety video.

• Read this user manual, specifically the entirety of Section 2 on Safety.

• Supervise children, visitors, and anyone who has not followed the previous guideline. In particular, make sure
they:

• Do not come in range of Fetch or Freight R&D robots when active.

• Are aware that the robot could move unexpectedly and is potentially dangerous.

• Are not alone with Fetch or Freight.

• Do not operate Fetch or Freight.

• Maintain a safe environment. Safety is not only impacted by how a developer operates a robot, but the
environment as well. The Fetch and Freight R&D robots are designed to operate in laboratory environments.

• Keep the robots at least 5 meters from the top of a stairway or any other drop off.

• Make sure the robots have adequate and level space for any expected or unexpected operation.

• If Fetch travels on a ramp, make sure that the spine is lowered and the arm is tucked so that the center of gravity
is as low as possible. The slope of the ramp should not exceed 1:12. Also make sure that the robot cannot drive
off the edge of the ramp.

• Make sure the environment is free of objects that could pose a risk if knocked, hit, or otherwise affected by the
robots.

• Make sure that there are no ropes or cables that could get caught in the covers, wheels, or arm.

• Make sure that no animals are near the robots.

• Keep fingers, hair, and clothing away from wheels, gears, and any location marked as a potential pinch point.

• Be aware of the location of emergency exits and ensure that the robots cannot block them.

• Do not operate the robots outdoors.

• The Fetch and Freight covers are flame-retardant. However keep the robots away from open flames. Never
use the robots around stoves or ovens.

• Do not allow the robot to come in contact with liquids (spilled drink, rain, etc.) If the robots do get wet, turn off
the breaker switch at the back of the robot and contact Fetch Robotics.

• Before removing any covers, the robot should be unplugged and the breaker switch at the back of the robot
should be off.

• Make sure that the power cord is in good condition. Cord insulation must be intact with no crack or deterioration.
Both connectors should be undamaged. If the power supply is damaged in anyway, it should be discarded and
replaced with a new one from Fetch Robotics.

• Do not run the robot without its covers, the covers help to protect users from internal mechanism pinch points
and potential electrical shock.

• Use common sense when operating the Fetch and Freight R&D robots.

• Do not allow the robots to grab or hit any person.

6 Chapter 2. Safety



Fetch Robotics, Release Melodic

• Do not allow the robots to drive into contact with, or over, any body part.

• Do not allow the robot to interact with any sharp or dangerous items.

• Do not allow the robot to operate potentially dangerous appliances (like stoves) or power tools.

• Pay attention to the warning labels on the robots.

Warning: Do not modify or remove any part of the software safety features

2.4 Warning Labels

Below are pictures of all the warning labels that can be found on the robot and associated safety issue.

2.4.1 Pinch Point

There are several pinch point warning labels on the robot. The labels mark the regions of the robot that could cause
injury to hands or finger while moving. It is important to hit the run stop immediately if a finger or hand becomes
trapped in a pinch point.

2.4.2 Electrical Shock

The electrical shock labels mark regions of the robot that could cause electrical shock if damaged or wet. If the water
enters the battery compartment of the robot or the power intlet connector, do not continue operating the robot. Shut
the robot down and turn of the robot using the power disconnect switch on the back of the robot. Then contact Fetch
Robotics support.

2.4. Warning Labels 7



Fetch Robotics, Release Melodic

2.4.3 Laser Beam

The laser beam warning label is to remind the user that there is an active laser scanner in the robot. The laser scanner
is a class 1 laser scanner and is eye safe under all normal operating conditions. However it is important to note that
incorrect use can lead to the user being exposed to dangerous radiation. If the laser housing is damaged on the robot
do not continue using the robot or look directly into the laser beam region.

2.4.4 Read The Manual

Read the manual stickers are found beneath the skins of the robot. It is important for the user to read the manual and
other maintenance documents before attempting to repair or perform maintenance on the robot.

8 Chapter 2. Safety



CHAPTER

THREE

GETTING STARTED

3.1 What’s In Box

The Fetch and Freight Research Edition robots each ship in reusable ATA cases. Inside each case you will find the
robot, toolkit, and power supply for charging the robot.

3.1.1 Fetch and Freight

Please watch the video below for unpacking Fetch or Freight. The video covers unpacking the robot, connecting the
batteries, turning on the robot, and driving the robot via the provided joystick.

3.1.2 Toolkit

The toolkit contains the tools, accessories, and fasteners needed to use the Fetch and Freight. The picture below shows
packaged toolkit.

Inside the toolkit box you will find:

Item # Item Name QTY Purpose
1 Metric Hex Key Set 1 For removing screws and attaching accessories
2 Right Angle USB Connector 1 To prevent USB connector damage while driving
3 Wireless Joystick 1 For teleoperating the robot
4 USB Cable 1 For charging the wireless joystick
5 Finger Tip Covers 4 To replace damaged finger tips
6 M5x10mm SHCS 4 For attaching accessories to the base mount points
7 M4x10mm SHCS 4 For attaching accessories to the head mount points
8 M3x14mm Standoffs 4 For attaching accessories to the gripper
9 3ft Ethernet Cable 1 For connecting the robot to the network
10 Fetch Robotics Stickers 5 For your laptop :)
11 Mircofiber Lens Cloth 1 For cleaning optics of the robot

9



Fetch Robotics, Release Melodic

10 Chapter 3. Getting Started



Fetch Robotics, Release Melodic

3.1.3 Robot Power Supply

The robot power supply is shown below in the packaging:

The robot plug end is shown below, when removing the charge plug from the robot always grab the plug by the housing
and not the cable.

Warning: Pulling on the charge plug cable instead of the handle can cause damage to the cable assembly over
time and could potentially cause injury to the robot or user.

3.1. What’s In Box 11



Fetch Robotics, Release Melodic

3.2 Running Fetch and Freight

3.2.1 Turning on Fetch and Freight

To turn on the robot, set the Power Disconnect Switch (the red one on the lower back of the robot) to the ON position
and then press the power switch on the access panel until it lights up.

3.2.2 Logging In

Once the robot is turned on and the robot is on the network, ssh into the computer of the robot using the default fetch
user account:

>$ ssh fetch@<robot_name_or_ip>

robot_name_or_ip will be either an IPv4 network address, or a network name, depending on the configuration of
your local network. If your computer and network is setup for multicast DNS (mDNS) then you may be able to use
fetchXYZ.local as the network name where XYZ will be the serial number of your robot (remove any leading
zeros from the serial number).

3.2.3 Connecting a Monitor (Optional)

If you are unable to access the robot through ssh due to your network settings you will need to connect an HDMI
monitor, USB keyboard and USB mouse to the side panel ports. Then use them to select your network from the
networking menu, it looks like an empty quarter circle pointed downward when disconnected, in the upper right hand
corner of the screen. Once it is set it should remain connected through all reboots.

Warning: Monitor cables that conform to HDMI specifications will fit the robot’s monitor port. But some cheaper
cables have overmolding that is too large given the spec and may not seat properly. Please ensure the HDMI cable
you are using is the correct size.

Note: If you are still having difficulty connecting to your robot you will need to contact your network administrator
for specific instructions on how to connect the robot to your network.

Once connected then create your user account as shown below.

Default User Account

Each robot ships with a default user account, with username fetch and password robotics. It is recommended to change
the password when setting up the robot.

12 Chapter 3. Getting Started



Fetch Robotics, Release Melodic

Creating User Accounts

It is recommended that each user create their own account on the robot, especially when developing from source. To
create an account on the robot, ssh into the robot as the fetch user, and run the following commands:

> sudo adduser USERNAME
> sudo usermod -G adm,cdrom,sudo,dip,plugdev,lpadmin,sambashare USERNAME

3.2.4 Tucking Fetch’s Arm

Note: The tuck arm server is a new feature released in fetch_teleop and fetch_bringup 0.6.0. The deadman became
required in fetch_teleop 0.7.0.

To tuck the arm, press and hold button 6, as shown in the image of the controller below, for one second. This will
trigger the tuck_arm server to tuck the arm. While tucking the arm, Fetch will avoid collisions with itself, however it
will not be using any active perception, so be sure to keep the space in front of the robot clear when running the tuck
arm. While the arm is tucking, you will have to hold the deadman. Releasing the deadman will stop the tucking action.

3.2.5 Driving Fetch and Freight with a Joystick

Each Fetch and Freight ship with a robot joystick. Whenever the robot drivers are running, so is joystick teleop. The
joystick is capable of controlling the movement of the robot base, torso, head and gripper.

Warning: Fetch robots use wireless controllers. As with any wireless technology, maximum range between
controller and robot can vary depending on environment. You should experiment with your robot to understand
the distance limit at which you can safely control your robot.

Note: If you are using the older PS3 controller a different version of this tutorial can be found here.

Note: To switch your robot to use a PS4 controller instead of a PS3 controller, see the instructions here.

3.2. Running Fetch and Freight 13



Fetch Robotics, Release Melodic

14 Chapter 3. Getting Started



Fetch Robotics, Release Melodic

Button # Function (details below)
0 Open gripper
1 Control robot turning
2 Control forward/backward driving
3 Close gripper
4 Disable motor position holding
5 Not used
6 Arm tuck
7 Not used
8 Head control deadman
9 Linear arm (“tooltip”) control
10 Primary deadman
11 Angular arm (“tooltip”) control
12 Torso up
13 Not used
14 Torso down
15 Not used
16 Pair/unpair with robot

To pair the controller with the robot, press the middle button (16) once the robot has powered on. The controller will
vibrate once successful. To unpair, hold the button for 10 s. The LED indicator on top will turn off.

To drive the robot base, hold the primary deadman button (button 10 above) and use the two joysticks. The left joystick
controls turning velocity while the right joystick controls forward velocity.

Warning: Whenever driving the robot, always lower the torso and tuck the arm to avoid potentially unstable
operation.

To control the head, release the primary deadman and hold the head deadman (button 8). The left joystick now controls
head pan while the right joystick controls head tilt.

To move the torso up, hold the primary deadman and press the triangle button (12). To move the torso down, hold the
primary deadman and press the X (14).

To close the gripper, hold the primary deadman and press the close button (3). To open, hold the primary deadman and
press the open button (0).

The Fetch arm/gripper can be teleoped by combining several inputs:

• Linear motion of the end effector: Primary deadman + Button 9 + joystick input

• Angular motion of the end effector: Primary deadman + Button 11 + joystick input

Some controllers, such as the arm and head controllers, will attempt to hold position indefinitely. Sometimes this is
not desired. Holding button (4) for 1 second will stop all controllers except the base controller and the arm gravity
compensation.

3.2. Running Fetch and Freight 15

https://github.com/fetchrobotics/fetch_robots/blob/melodic-devel/fetch_bringup/scripts/controller_reset.py


Fetch Robotics, Release Melodic

Moving the Base with your Keyboard

Note: You will need a computer with ROS installed to properly communicate with the robot. Please consult the ROS
Wiki for more information. We strongly suggest an Ubuntu machine with ROS Melodic installed.

To teleoperate the robot base in simulation, we recommend using the teleop_twist_keyboard.py script from
teleop_twist_keyboard package.

>$ export ROS_MASTER_URI=http://<robot_name_or_ip>:11311
>$ rosrun teleop_twist_keyboard teleop_twist_keyboard.py

3.2.6 Visualizing Data

>$ export ROS_MASTER_URI=http://<robot_name_or_ip>:11311
>$ rosrun rviz rviz

Note: You will need a computer with ROS installed to properly communicate with the robot. Please consult the ROS
Wiki for more information. We strongly suggest an Ubuntu machine with ROS Melodic installed.

You can now manually set up your RVIZ visualization or re-run RVIZ with a configuration file using the command
line. The default .rviz configuration file for Fetch can be loaded using:

>$ roscd fetch_navigation/config
>$ export ROS_MASTER_URI=http://<robot_name_or_ip>:11311
>$ rviz -d navigation.rviz

16 Chapter 3. Getting Started

http://wiki.ros.org/melodic/Installation
http://wiki.ros.org/melodic/Installation
http://wiki.ros.org/teleop_twist_keyboard
http://wiki.ros.org/melodic/Installation
http://wiki.ros.org/melodic/Installation
http://gazebosim.org/tutorials?tut=drcsim_visualization&cat=drcsim#VisualizingtheRobotmodel


Fetch Robotics, Release Melodic

Using the Runtime Monitor

Fetch and Freight publish ROS diagnostics messages. These are human-readable messages that inform users of the
robot system state. The runtime_monitor, part of rqt_robot_plugins can be used to view diagnostics from your
desktop computer:

>$ export ROS_MASTER_URI=http://<robot_name_or_ip>:11311
>$ rosrun rqt_runtime_monitor rqt_runtime_monitor

The runtime monitor will have one entry per motor controller board (MCB), as well as one entry per breaker. Each of
these entries will be classified as either stale, an error, a warning, or OK. In the above image, the supply_breaker is
disabled because the robot is not plugged in – this is only a warning, and not actually an issue.

Common errors that can be detected are overly hot motors or breakers, breakers that have tripped. When the runstop
on Fetch is pressed, a number of breakers become disabled and the motor controller boards are turned off, causing
them to go stale. The below image shows what a runstopped Fetch might look like:

3.2.7 Putting Fetch and Freight Away

Before turning the robot off, it is recommended that you tuck the arm. When power is shut off, the arm will want to
slowly fall and will be more difficult to backdrive when in the off configuration.

To turn the robot off, press and hold the illuminated power button on the access panel until it starts blinking. The power
button will continue blinking until the computer has successfully shut down, and then power will be disconnected.

3.2. Running Fetch and Freight 17



Fetch Robotics, Release Melodic

18 Chapter 3. Getting Started



CHAPTER

FOUR

ROBOT HARDWARE OVERVIEW

4.1 Mechanism Terminology

The Fetch and Freight kinematics are defined by using the concepts of joints, links, and coordinate frames. The
robot URDF (unified robot description format) model specifies the attributes (kinematic tree, names, ranges, etc.)
of the joints, links, and frames of the robot. A link element in the URDF describes a rigid body with inertia, visual
features, and coordinate frames. A joint element in the URDF defines the kinematics, dynamics, safety limits, and type
(revolute, continuous fixed, prismatic, floating, or planar). Fixed joints are typically used to describe the relationship
between two rigidly joined components in the robot.

4.1.1 Link

The links for the Fetch and Freight are defined in the URDF description that are located in the fetch_description or
freight_description package respectively.

4.1.2 Frame

Frames represent the coordinate frames of links, detected objects, sensors, or the location of another robot in the world.
Frames are define relative to other frames and the transformations between each frame is tracked using TF.

4.1.3 Joint

A joints define the relationship between links and are defined in the URDF description that can be found in the
fetch_description or freight_description package respectively. In the Fetch and Freight the majority of the joints are
rotational, the torso is prismatic, and there are several fixed joints describing the location of sensors within the robot.
Rotational and translational joints are represented similarly in the URDF, and joint forces are described as effort instead
of force or torque. Position, and velocity are both used to describe linear and angular motion of a joint.

4.1.4 Fetch Home Pose

The home pose of the Fetch robot is used to describe the joint positions in a consistent manner. The home pose is
defined as the robot arm straight out in front of the robot with all x-axes aligned, the gripper in the closed position, and
the x-axes of the head parallel and aligned with the arm, in this position all of the joints are considered to be zeroed.
The calibration reference for most joints are not at the joint zero and the URDF of the Fetch contains the offsets for
each joint.

19



Fetch Robotics, Release Melodic

4.1.5 Coordinate System

The coordinate frames for all links in the Fetch and Freight are defined with positive z-axis up, positive x-axis forward,
and positive y-axis to the robot-left when Fetch is in the home pose. All joint angle conventions are chosen such that
from the home pose, positive motion of the joint results in positive motion around a positive axis of a joint coordinate
frame (i.e. right handed).

4.1.6 Naming Conventions

In general, the names for a link, a joint, and frame will be similar (e.g. shoulder_pan_link, shoulder_pan_joint, and
shoulder_pan_frame). Short prefixes are used to describe the location of repeated components (i.e. drive wheels). The
diagrams below show the link and joint naming conventions as well as the positive direction of joint motion.

20 Chapter 4. Robot Hardware Overview



Fetch Robotics, Release Melodic

4.1. Mechanism Terminology 21



Fetch Robotics, Release Melodic

4.2 Mechanical Overview

Do not operate Fetch or Freight before reviewing the mechanical information listed below.

4.2.1 Environmental

The Fetch and Freight Research Edition Robots are indoor laboratory robots. Operating outside this type of environ-
ment could cause damage to the Fetch and Freight robots, and injury or death to operators.

Drive Surface

• The drive surface of the Fetch must be capable of supporting the entire weight of Fetch, about 250 lbs (113.3
kgs). If the surface is too soft, Fetch can get stuck and fail to drive. A commercial carpet or tile is recommended.

• The drive surface of the Freight must be capable of supporting the entire weight of the Freight about 150 lbs
(68 kgs) plus the weight of the payload. If the surface is too soft, Freight can get stuck and fail to drive. A
commercial carpet or tile is recommended.

Incline Surface

• Fetch and Freight are ready for ADA-compliant ramps, which are at no more than a 1/12 slope. Ramps that are
steeper than a 1/12 slope are unsafe and may be a tipping hazard.

Water

• Fetch and Freight have not been tested for any type of contact with water or any other liquid. Under no circum-
stances should Fetch nor Freight come in contact with water from rain, mist, ground water (puddles) and any
other liquid. Water contact can cause damage to the electrical circuitry and the mechanism.

Temperature and Humidity

• Fetch and Freight are designed to run in environments between 15C and 35C.

• Keep Fetch and Freight away from open flames and other heat sources. Never use Fetch or Freight around stoves
or ovens.

4.2.2 Forces and Torques

Joint position, velocity, and force limits are implemented in the Fetch and Freight URDF file as well as in firmware.
Firmware implements additional power limits. These joint limits control the range of travel of the mechanism and
the allowable velocity to prevent over-travel. These limits are enforced by the controller, and are designed to prevent
poorly commanded control efforts from damaging the robot or harming operators.

The limits below are from the Fetch and Freight URDF files. If a velocity or torque limit is not specified, no value is
enforced.

22 Chapter 4. Robot Hardware Overview



Fetch Robotics, Release Melodic

Joint Velocity Torque/Force Power
“*”_wheel_joint 17.4rad/s 8.85Nm 120W
torso_lift_joint 0.1m/s 450N TBD
head_pan_joint 1.57rad/s 0.32Nm TBD
head_tilt_joint 1.57rad/s 0.68Nm TBD
shoulder_pan_joint 1.25rad/s 33.82Nm TBD
shoulder_lift_joint 1.45rad/s 131.76Nm TBD
upperarm_roll_joint 1.57rad/s 76.94Nm TBD
elbow_flex_joint 1.52rad/s 66.18Nm TBD
forearm_roll_joint 1.57rad/s 29.35Nm TBD
wrist_flex_joint 2.26rad/s 25.70Nm TBD
wrist_roll_joint 2.26rad/s 7.36Nm TBD
“*”_gripper_finger_joint 0.05m/s 60N –

4.2.3 Joint Limits and Types

The position limits for Fetch and Freight are specified below. These “hard limits” are the maximum travel for the
mechanism.

Joint Type Limit (+) Limit (-)
“*”_wheel_joint continuous – –
torso_lift_joint prismatic 400mm 0mm
head_pan_joint revolute 90° 90°
head_tilt_joint revolute 90° (down) 45° (up)
shoulder_pan_joint revolute 92° 92°
shoulder_lift_joint revolute 87° 70°
upperarm_roll_joint continuous – –
elbow_flex_joint revolute 129° 129°
forearm_roll_joint continuous – –
wrist_flex_joint revolute 125° 125°
wrist_roll_joint continuous – –
“*”_gripper_finger_joint prismatic 50mm 0mm

4.2.4 Mount Points

Fetch and Freight both have mount points on top of the robot base. Fetch also has mount points on the head and
gripper. The table below lists the fasteners that should be used and the max torques to use when installing fasteners.
The spacing of the square grid of mount points is also included.

Location Fastener Max Torque Grid Spacing
Base M5* 3.6Nm 50mm
Head M4 3.0Nm 25mm
Gripper M3 0.50Nm (into the standoff) 50mm

Note: When mounting additional items on top of the base, a 6mm maximum thread engagement into the mounting
holes must be maintained. Exceeding this maximum may cause the top plate of the base to deflect. On older robots,
this depth may be limited to 4mm.

4.2. Mechanical Overview 23



Fetch Robotics, Release Melodic

4.2.5 Gripper Modularity Interface

The gripper interface is modular, allowing the gripper to be replaced with alternate configurations. The gripper inter-
face is based on an ISO mechanical standard, Ethernet communications and 24V power. For further details, contact
Fetch Robotics for the Gripper Interface Specification document.

4.3 Electrical Overview

Internally, Fetch and Freight have a number of circuit boards, communication buses, and other components which
handle power distribution and motion control. The system comprises:

• The robot computer, running ROS, sends commands to the mainboard and gripper board over an Ethernet
interface. This same Ethernet interface is used to communicate with the scanning laser range finder in the base
of the robot. The fetch_drivers package provides an interface from the robot computer to the mainboard,
and the default gripper.

• The mainboard then communicates with the various motor controller boards (MCB) located throughout the
robot. Communication with the MCBs is done over several half-duplex RS-485 buses. In addition to
communications-related tasks, the mainboard also controls a number of electronic circuit breakers and also
carries the charger circuitry which charges the batteries.

• Each joint has a dedicated MCB with a dedicated microcontroller and an RS-485 connection. The arm MCBs
all share one bus while all other MCBs share the other RS-485 bus. The microcontroller on each MCB is where
the real-time control loops run.

Fetch and Freight both have two 12V Sealed Lead Acid (SLA) batteries located in the robot base. The batteries are
connected in series, providing the nominal 24V power rail for the robot. These batteries are kept charged by the
mainboard (see Charging).

24 Chapter 4. Robot Hardware Overview



Fetch Robotics, Release Melodic

4.3.1 Breakers

There are several breakers within the robot. These are designed in order to prevent damage to the robot if cabling
should become worn or shorted out, or in the case of sudden, unexpected overload of a joint. The table below describes
each breaker, using the names that are used in fetch_drivers and diagnostics:

Breaker Name Usage
supply_breaker Limits current between the charging inlet and mainboard.
battery_breaker Limits current between the mainboard and batteries.
computer_breaker Limits current delivered to the robot computer.
base_breaker Limits current delivered to base MCBs, as well as torso and head MCBs on Fetch.
arm_breaker Limits current delivered to the MCBs located in the arm
gripper_breaker Limits current delivered to the gripper.

When a breaker is disabled or tripped, power will no longer flow to the connected devices. In the case of MCBs, this
means that they will not be able to communicate with the mainboard.

4.3.2 Power Disconnect Switch

The power disconnect is on the lower back of the robot. This switch cuts the power between the battery and the
mainboard. It also acts as a breaker, limiting the total current that can be delivered by the batteries.

4.3.3 Runstop

The runstop is used to stop all operation of the joints. It works by disabling the base, arm and gripper breakers. When
the runstop is pressed, the drivers will not be able to communicate with the MCBs, and thus their position and other
data will not update in RVIZ nor the runtime monitor.

4.3. Electrical Overview 25



Fetch Robotics, Release Melodic

26 Chapter 4. Robot Hardware Overview



Fetch Robotics, Release Melodic

4.3.4 Access Panel

Fetch and Freight both have an access panel with 2 USB, an Ethernet, and an HD Video port. All of these ports are
connected directly to the onboard computer. In addition, Fetch has an extra USB port on the head.

Item # Item Name
1 HD Video Port
2 USB Port 1
3 USB Port 2
4 Ethernet Port
5 Power Button
6 Charge Indicator Light

The access panel is also the location of the power button which turns the robot on or off. This switch is connected to
the mainboard and will only work if the power disconnect switch (the red one on the lower back of the robot) is in the
ON position. Pressing the power button until it lights up with boot the robot, including the computer. To turn the robot
off, press and hold the illuminated power button on the access panel until it starts blinking. The button will continue
blinking until the computer has successfully shut down, and then power will be disconnected.

4.3. Electrical Overview 27



Fetch Robotics, Release Melodic

4.4 Motion Control

Each joint has a dedicated motor controller board (MCB) with a dedicated microcontroller. The real-time components
of the controls run on the MCBs, while the robot computer streams commands to the MCBs.

All motors are brushless and each MCB runs an effort controller at 17.5kHz. Each MCB can also run an optional
velocity controller which takes a desired velocity and outputs a control into the effort controller. Further, each MCB
can run a position controller which can feed into the velocity controller. The position and velocity controllers each
run at 1kHz, and the default rate for the commands streaming from the robot computer is 200Hz. Each MCB can then
receive any of the following types of commands:

• Desired position, desired velocity, and desired effort

• Desired velocity and desired effort

• Desired effort

Each MCB returns the measured effort, velocity and position of the joint it is controlling.

Most users will want to use the high-level Arm and Torso ROS API, however, users can also create their own controllers
as ROS plugins that run on the robot computer and send commands to the MCBs using the robot_controllers_interface
package.

28 Chapter 4. Robot Hardware Overview



Fetch Robotics, Release Melodic

4.5 Sensor Overview

4.5.1 Base Laser

Both Fetch and Freight have a SICK TIM571 scanning range finder. The laser has a range of 25m, 220° field of view,
15Hz update rate and angular resolution of 1/3°. The laser publishes both distance and RSSI (Received Signal Strength
Indication) to the base_scan topic.

4.5.2 IMU

The mainboard of Fetch and Freight have a 6-axis inertial measurement unit (IMU). The gyroscope within the IMU is
capable of measuring +/-2000 degrees per second, while the accelerometers are capable of measuring +/-2g. See IMU
Interface for details on the ROS API.

4.5.3 Head Camera

Fetch has a Primesense Carmine 1.09 short-range RGBD sensor. This camera is best calibrated in the 0.35-1.4m range.
See Head Camera Interface for details on the ROS API.

4.5.4 Gripper Sensors

In addition to the position and effort feedback of the gripper joint, the gripper incorporates a 6-axis inertial mea-
surement unit (IMU). The gyroscope within the IMU is capable of measuring +/-2000 degrees per second, while the
accelerometers are capable of measuring +/-2g. See IMU Interface for details on the ROS API.

4.5. Sensor Overview 29



Fetch Robotics, Release Melodic

30 Chapter 4. Robot Hardware Overview



CHAPTER

FIVE

COMPUTER OVERVIEW AND CONFIGURATION

Both Fetch and Freight have an internal computer which runs a Long Term Support (LTS) release of Ubuntu and an
LTS release of ROS. These releases are intended to give long-term stability to the system.

5.1 Default User Account

Each robot ships with a default user account, with username fetch and password robotics. It is recommended to change
the password when setting up the robot.

5.2 Creating User Accounts

It is recommended that each user create their own account on the robot, especially when developing from source. To
create an account on the robot, ssh into the robot as the fetch user, and run the following commands:

> sudo adduser USERNAME
> sudo usermod -G adm,cdrom,sudo,dip,plugdev,lpadmin,sambashare USERNAME

5.3 Networking

The robot has both internal and external Ethernet-based networks, as well as an external wireless network interface.
The external network interfaces are intended for users to connect to the robot, while the internal networks are used to
send data between the internal components of the robot.

The majority of communication between components onboard Fetch and Freight happen via the internal Ethernet
network. This network is located in the 10.42.42.0/24 subnet and connects the robot computer to the devices listed in
the table below. As such, it is important that your building networks do not use the same subnet.

Device IP Address
Computer eth1 10.42.42.1
Laser range finder 10.42.42.10
Mainboard 10.42.42.42
Gripper 10.42.42.43

There are two possible interfaces for external connecting to the robot computer: the wireless interface and the wired
interface. Most users will prefer to use the wireless interface, however the access panel also includes a Gigabit Ethernet
interface for stationary tasks that require higher bandwidth.

31



Fetch Robotics, Release Melodic

Warning: Never drive the robot with an Ethernet cable attached to the access panel.

5.3.1 Connecting the Robot to a Wireless Network

The easiest way to configure the wireless networking is to connect a monitor, keyboard, and mouse and use Ubuntu’s
Network Manager interface.

5.3.2 Configuring the Robot to use a Static IP for Access Panel Ethernet

For 18.04: Edit and uncomment the section for eth0 in /etc/netplan/99-fetch

For 14.04: Edit and uncomment the section for eth0 in /etc/network/interfaces

After making changes, restarting the robot will ensure changes for the ethernet port take effect.

5.3.3 Troubleshooting ROS Interactions with Robot Across a Network

External networking with the robot is typically done to provide an interface to various ROS capabilities. To en-
sure a working network setup between robot and PC, reference the following guide to the ROS_MASTER_URI and
ROS_HOSTNAME environment variables. A key recommendation is to use hostnames instead of IP addresses for
ROS_MASTER_URI and ROS_HOSTNAME. This will minimize issues with e.g. DHCP not being present or unex-
pectedly changing network behavior.

Note that the ROS_HOSTNAME is unneeded in the case where the robot and computer hostnames are addressable on
the local network. (E.g. via DNS or entries in the file /etc/hosts)

32 Chapter 5. Computer Overview and Configuration



Fetch Robotics, Release Melodic

A symptom of an incomplete setup may be that some ROS commands work, while others do not. Commands (such
as rostopic list, rosservice list) retrieve information through the connection they create, while other
commands (rostopic echo, many components in rviz) attempt to tell the robot a location to send info to via
future connections.

For a more in-depth general overview of robot-to-PC networking, see also the ROS Network Setup Tutorial.

5.4 Clock Synchronization

It is recommended to install the chrony NTP client on both robots and desktops in order to keep their time synchro-
nized. By default, robots do ship with chrony installed, but did not initially. To install chrony in Ubuntu on an older
robot:

> sudo apt update
> sudo apt install chrony

5.5 Upstart Services

Fetch and Freight use systemd to start and manage various services on the robot. The following systemd services (aka
‘units’) start when the robot is booted:

Name Description
roscore starts a roscore
robot starts robot drivers, requires roscore
ps3joy driver for PS3 robot joystick over bluetooth
ps4joy driver for PS4 robot joystick over bluetooth

Services can be restarted with the service command. For instance, to restart the robot drivers:

> sudo service robot stop
> sudo service robot start

Since roscore runs independently of the drivers, the drivers can be restarted without having to restart remote instances
of RViz or similar ROS tools. Note that this also means the parameter server will not be reset when restarting the
drivers, and so a roscore restart may be required if the parameter server has been corrupted by a user script.

5.6 Log Files

ROS logs are created in the /var/log/ros folder. The robot service’s logs are also sent to /var/log/ros/robot.log. This
log file is a common place to check for information on errors, if the robot is not working. The other systemd services’
outputs are less often used, but can be viewed using e.g. journalctl -u roscore.

5.4. Clock Synchronization 33

http://wiki.ros.org/ROS/NetworkSetup


Fetch Robotics, Release Melodic

5.7 Speakers and Audio

The mainboard of Fetch and Freight contains a USB audio device. While the device enumerates as a standard Linux
audio device, we recommend using the sound_play ROS package to access the speakers. sound_play is automati-
cally started as an upstart service when the robot starts. This service is pre-configured to have the correct group-level
access to the audio system. If using the speakers directly through a Linux interface, be sure to add your user to the
audio group in order to actually access the speakers.

While the sound_play ROS interface allows users to set an audio level, the audio level set is a percentage of the
audio level set for Linux. To adjust the Linux audio level, use the following command and follow the on-screen
instructions:

> sudo su ros -c "alsamixer -c 1"

34 Chapter 5. Computer Overview and Configuration

http://wiki.ros.org/sound_play


CHAPTER

SIX

CARE AND FEEDING

6.1 Charging

The robot can be charged by plugging the supply connector of the power brick into the front of the robot or by docking
with the robot charge dock. When using the supply connector, make sure the “Fetch” logo is facing up, otherwise the
connector will not properly mate:

The connector needs roughly 100 newtons (24 lbs) of force to plug in. If it seems the connector will not mate with this
much force, check the plug and connector for damage or foreign objects.

The charge indicator light on the Access Panel indicates the status of the battery and charging:

35



Fetch Robotics, Release Melodic

Charge Indicator Meaning
Solid Green Robot is fully charged
Blinking green Robot is charging
Solid Red Battery voltage is low
Blinking red Charging error has occurred

The charge indicator light will flash green when the robot is charging. When the robot is completely charged the
indicator light will stay solid green.

The charge indicator light will turn red when the battery voltage is low. When the charge indicator turns red, you
should recharge the robot. If the battery voltage gets low enough, the robot will automatically turn off.

In some cases, the charging circuit may detect an error condition and will flash the charging indicator red. After about
1 minute, the charger will attempt charging again. If the error condition persists, a support ticket should be created to
address the problem.

Note: One notable charging error is caused by the Power Disconnect Switch being switched off. When the power
disconnect is switch off, it disconnects the battery which prevents the charger from working. When the charger detects
this situation it will flash both the charge indicator red, and the power button at the same time.

The robot will typically need about 3.5 hours to charge batteries from empty to 90% capacity. It will take an additional
3 hours to charge remaining 10% of battery capacity. While the robot does not need to get to 100% on every charge,
it is strongly recommended that the robot be fully charged at least once a week to get the best possible life out of the
batteries. Charging works whether the robot is on or off. It is perfectly acceptable to have robot move its arm, torso,
and head while charging. However, you should not drive the robot while charging because it is easy to misjudge the
cable length and damage the wiring or connector.

There are also some important rules that should be followed to prevent damage to robot and charging supply.

1. When disconnecting the supply from robot, grab plug and pull out. Never pull on the cable to pull out the plug.
Also, when moving power supply brick, do not use cable to pull it around. All copper wire has poor tensile
strength and can break with too much abuse.

2. Pull straight back when disconnecting the supply plug, do not pull out at an angle. The connector is not designed
to support large sideways forces. It is easy to pull in the correct direction when grabbing the plug, but not when
pulling on the cable. This is another reason that the plug should never be pulled out using the cable.

3. Do not attempt to drive robot while plugged into charger. In our experience it is too easy to misjudge the cable
length. The robot is heavy and the drive motors can produce high torques. The robot can easily rip out the
connector and cord even while moving at slow speeds. Even when turning in place, its possible to pull on the
plug if the robot happens to drive over the cord.

If the supply wiring or connector is damaged, do not attempt use the damaged supply. Instead create a support ticket
to get the damage part fixed or replaced.

36 Chapter 6. Care And Feeding



Fetch Robotics, Release Melodic

6.2 Batteries

The robot uses two large sealed lead-acid (SLA) 12V batteries. These batteries should provide many hours of robot
run time. Like most chemical battery technologies, the amount energy the batteries can provide will decrease as they
age. Luckily, replacing the batteries is simple and relatively inexpensive. Even so, there are few things that can done
to improve battery lifetime.

1. Keep batteries charged. Leaving SLA batteries in partially discharged state will age the batteries more quickly,
reduce useful running time. Therefore, if the robot is not going to be used for a prolonged period, it should first
be fully charged, and can be safely left on the charger during this period. Alternately, after charging, you can
remove the top covers on the base and disconnect the batteries before storing the robot.

2. Avoid deep discharge of batteries when not necessary. Battery will age less when discharged twice to 50%
capacity than discharged once to 100% capacity once.

3. Fully charge battery instead of just partially charging battery between uses. While this is not always feasible, it
will slow the rate at which individual battery cells get out of balance.

4. When doing heavily cycling of batteries, leave the batteries charging for an extra long period of time, at least
once a week. Even though the batteries may be fully charged, leaving the batteries on charger for longer period
of time will help balance out differences in individual cell voltages that accumulate over time. This not as
important when batteries are only discharged small amounts during each use.

5. Keep robot cool. Cool batteries age less than warm ones.

In the case where your robots batteries have reached their end of life, you can contact Fetch Robotics Support to
acquire replacements. In the mean time, you can continue to use the arm, torso and head while the robot is connected
a charger.

Warning: The robot is not designed to be run without a battery, so end-of-life batteries should be left in the robot.
If the robot is operated with the batteries disconnected, electrical components could potentially be damaged and
need replacement.

6.3 Updating Your Robot

Your robot has been pre-configured with ROS Melodic and the appropriate APT repositories from which to fetch
package updates. Upgrading to the latest packages is as easy as:

sudo apt update
sudo apt install --only-upgrade ros-melodic-*

export ROBOTTYPE=$(hostname | awk -F'[0-9]' '{print $1}')
wget http://packages.fetchrobotics.com/binaries/$ROBOTTYPE-melodic-config.deb
sudo apt install ./$ROBOTTYPE-melodic-config.deb -y

Warning: Using ‘apt upgrade’ and ‘apt dist-upgrade’ could cause critical software, such as the kernel, to change.
We can not guarantee your robot will function after making such a change. We recommend against using these
commands unless you understand and accept the risks.

Note: If your robot is running Ubuntu 14.04 with ROS Indigo, the above commands will need to be slightly modified
(i.e. ros-indigo instead of ros-melodic). You can upgrade your robot to the currently supported version by following

6.2. Batteries 37



Fetch Robotics, Release Melodic

the OS upgrade procedure.

Each circuit board within the robot is equipped with a bootloader, allowing new and updated firmware to be installed.
New releases of the fetch-drivers package may include updated firmware for your robot, which will automatically be
installed when the drivers are next started (typically by the robot upstart service). When restarting the robot service,
there may be a slight delay before the drivers are fully operational if a new firmware upgrade is included.

6.4 Re-Setting up apt Sources

If someone has changed or deleted the default apt sources then the following commands will create sources.list files
so that the robot can see the public ROS package server.

:: >$ sudo sh -c ‘echo “deb http://packages.ros.org/ros/ubuntu bionic main” > /etc/apt/sources.list.d/ros-latest.list’

Additionally, it is possible that the apt key has changed for the ROS package server. The instructions for the correct
key can be found here.

6.5 Cleaning Your Robot

To clean fingerprints, dirt, and smudges from the skin of Fetch and Freight use a clean soft cloth and isopropyl alcohol
or window cleaner (e.g. Windex). Make sure to wet the cloth with the isopropyl alcohol or window cleaner, and then
gently clean the skins of the robot.

Warning: Do not spray or pour isopropyl alcohol or window cleaner directly on the skins of the robot, this may
damage the skins or worse cause fluids to enter the robot.

To clean the sensor optics of Fetch and Freight use the lens cloth provided in the tool kit. Lens tissues or cotton swabs
are also good options for cleaning the optics of the robot.

Warning: Do not use window cleaner, acetone, or abrasive cloths on the sensor lenses as this may cause damage
to the lens.

38 Chapter 6. Care And Feeding

http://packages.ros.org/ros/ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu#Installation.2BAC8-Ubuntu.2BAC8-Sources.Set_up_your_keys


CHAPTER

SEVEN

ROS MELODIC + UBUNTU 18.04

Warning: Rarely, issues may occur with some installs. You should ensure that your research schedule/needs will
allow for a possible prolonged troubleshooting phase with your robot(s).

Fetch Robotics has recently started supporting ROS Melodic and Ubuntu 18.04 on Fetch and Freight robots. Other
than the process of upgrading a robot, there should be minimal effect on using your robot. If you observe an issue,
please let us know via a support ticket.

7.1 Known issues

Warning: The PS3 controller does not work as well on 18.04 as it did on 14.04. To achieve smooth control, the
input from the controller will need to be continually varied. This can be done by continually moving or shaking
the controller. Alternately, you can switch to using a PS4 controller.

Warning: Gazebo9 and the Fetch have some bugs which we are currently aware of. If you use Gazebo, please
check the status of this issue on GitHub.

7.2 Upgrading Your Robot to ROS Melodic + Ubuntu 18.04

Warning: Read this document in full to ensure you understand the procedures. It is not straightforward to go
back to ROS Indigo/Ubuntu 14.04 after doing this. Ensure your colleagues are on board with doing this upgrade.

This document is a procedure for replacing the contents of your robot’s SSD with an Ubuntu 18.04 install and ROS
Melodic. All files will be erased!

39

https://github.com/fetchrobotics/fetch_gazebo/issues/37


Fetch Robotics, Release Melodic

7.2.1 Before Upgrade

Back up files from the robot! All files will be erased, so make sure to save files specific to your research work. There
are a few categories of files to back up:

1. Calibration and other robot-specific files. By convention, these are all in /etc/ros/[indigo|melodic]/

2. Files relating to your research work

3. A record of what packages you installed for ROS Indigo

4. Udev rules created for additional hardware (e.g. sensors) added to your robot (not common)

5. Network hardware configuration (for troubleshooting)

Below, we assume that after logging into the robot (e.g. via ssh) you back up files to a machine named HOST with
username USER.

For (1), we recommend doing:

tar -zcf fetch_robot_files.tar.gz /etc/ros/indigo/
scp fetch_robot_files.tar.gz USER@HOST:~/

For (2), this may include workspaces, logs, and training data. You might even want to back up the entirety of /opt/
ros/indigo if you are unsure.

For (3), you can easily record the list of packages you installed via:

dpkg -l | grep ros-indigo > installed_indigo_packages.txt

As well, you might want to record what repositories are part of your workspaces.

For (4), such files are likely located in /etc/udev/rules.d/, and should be saved.

For (5), this file may be useful for reference if the install process doesn’t automatically set up networking on your
robot correctly:

scp /etc/udev/rules.d/70-persistent-net.rules USER@HOST:~/$(hostname)_udev_net_rules

If you are using any additional hardware (sensors), be sure to record what network or other hardware configuration
changes were made to get them working.

7.2.2 AUTOMATED INSTALLER: 18.04 and ROS Melodic Install

This section guides you through using a custom automated installer that will set up Ubuntu with ROS packages and
Fetch customizations for robots. You can alternately do a manual install, which is outlined in the next section.

Important: Back up your files as described in the previous section

Important: This automated installer will not work for setting up a dual booting robot. For this, we recommend
following the manual procedure instead, below.

1. Runstop the robot, to avoid unexpected movement of the robot.

2. Create the installer USB flash drive using a separate computer:

1. In a web browser, navigate to http://packages.fetchrobotics.com/images/ and click and download the latest
fetch_ubuntu_*.iso

40 Chapter 7. ROS Melodic + Ubuntu 18.04

http://packages.fetchrobotics.com/images/


Fetch Robotics, Release Melodic

2. Plug the flash drive into your computer.

3. In a terminal, run sudo usb-creator-gtk. This will open a utility for putting the install image onto
the flash drive. Select the fetch_ubuntu.iso file (you may have to browse via “Other”. Verify the correct
disk is selected in the second listbox, and then click “Make Startup Disk”. (If usb-creator-gtk fails to
work, you probably will need to format the disk using, e.g., gParted. After formatting the USB drive, retry
usb-creator-gtk)

3. Install OS with ROS, etc. included:

1. Plug in the USB flash drive to the robot, as well as a monitor, keyboard and mouse.

2. Turn the robot on with the power button, and press either F7 or F11 several times to get to the boot device
selection window shown in the next step. If you fail to get to a screen like the below, restart the robot and
try again:

3. The name of the correct option in the boot menu varies based on the flash drive you used. Typically, it will
be similar to “UEFI (FAT) FlashDrive Name”. See the following images for what to expect and select:

7.2. Upgrading Your Robot to ROS Melodic + Ubuntu 18.04 41



Fetch Robotics, Release Melodic

Note: We have only tested English language installs

4. Once the install gets to the following screen, the post-install script will walk you through the rest of the
install.

5. If the robot is not connected to the internet via an ethernet cable, you will next be prompted to connect to a
wifi network in order to install needed packages. Otherwise, you will be prompted whether to also connect
to a wifi network.

6. Next you will be prompted to give the robot’s name. A name other than fetchXX or freightXX will result in
a non-robot install of Ubuntu 18.04 (with ROS also installed). We recommend keeping the same hostname
for the robot, e.g. fetch1104

7. Once the terminal window changes from blue to white, user input is no longer needed and you can leave
the install to run (15+ minutes, depending on internet speed).

8. The fetch user will be automatically created, with password ‘robotics’.

9. Wait for the install to complete. The post-install script will restart fairly quickly, and then resume run-
ning/installing after the reboot. It will then reboot a second time, at which point you should see a grey
Fetch Robotics desktop background, and the install is complete.

42 Chapter 7. ROS Melodic + Ubuntu 18.04



Fetch Robotics, Release Melodic

10. After the install completes, continue to the Post-install Validation section below.

If the installer appears to get stuck, please send a picture of the screen to Support. If it is stuck in one of the initial
steps before you get to the language selection screen, you can try re-running the install, or if that fails, recreating the
flash drive.

7.2.3 MANUAL APPROACH: 18.04 Install and Installing ROS/Fetch Packages

Important: Back up your files as described in the previous section

1. Runstop the robot, to avoid unexpected movement of the robot.

2. Install Ubuntu 18.04 on the robot. Download the latest 18.04 Ubuntu installer from http://releases.ubuntu.
com/18.04/ (in these instructions we use the Desktop image, version 18.04.2). For help booting from USB, see
Accessing Boot Menu on Fetch Robots.

1. We recommend keeping the same hostname for the robot, e.g. fetch4

2. You can create the fetch user, or let it be automatically created later. (The typical password for the fetch
user is ‘robotics’.)

• After install, you may need to unblock apt. Do this by clicking the App Store icon on the sidebar, which

should trigger an update prompt you can close:

• You’ll probably want to install a few convenience packages such as openssh-server to enable SSH into
your robot: sudo apt install openssh-server net-tools. You might also want to install
your favorite commandline text editor.

3. Update your Ubuntu install: sudo apt update && sudo apt dist-upgrade -y

4. Install ROS Melodic by following the instructions on the ROS Wiki. You will want to do steps 1.1 through 1.6.
In writing/testing these instructions, we assume:

• You use the ROS-Base setup, via the ros-melodic-ros-base package.

• You are using bash, so step 1.6 for the fetch user is:

echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc
source ~/.bashrc

You can also make this apply for all new users: sudo su -c 'echo "source /opt/ros/
melodic/setup.bash" >> /etc/bash.bashrc'

5. NOTE: at a later time, Fetch may host and recommend its own mirror of ROS Melodic debians.

6. Run the following to install Fetch research debians:

• General packages for Fetch robots:

sudo apt install ros-melodic-fetch-calibration ros-melodic-fetch-open-auto-
→˓dock \
ros-melodic-fetch-navigation ros-melodic-fetch-tools -y

• Then install packages specific to the robot type:

7.2. Upgrading Your Robot to ROS Melodic + Ubuntu 18.04 43

http://releases.ubuntu.com/18.04/
http://releases.ubuntu.com/18.04/
http://wiki.ros.org/melodic/Installation/Ubuntu


Fetch Robotics, Release Melodic

export ROBOTTYPE=$(hostname | awk -F'[0-9]' '{print $1}')
# sudo apt install $ROBOTTYPE-melodic-config # pending future availability
wget http://packages.fetchrobotics.com/binaries/$ROBOTTYPE-melodic-config.deb
sudo apt install ./$ROBOTTYPE-melodic-config.deb -y

If you get an error regarding chrony, do sudo apt install chrony, and then try the melodic-config debian
install again.

7. Power cycle the robot:

sudo /sbin/reboot

7.3 Post-install Validation

This is a direct continuation of either of the previous sections’ procedure. It is assumed that your robot is still run-
stopped.

Verify that things are working. All of the following steps assume that you are ssh’d into the robot:

ssh fetch@fetchXXXX

1. If your robot has not been upgraded in a while, it is likely that it will need to automatically upgrade the firmware
on its boards. This can take several minutes to complete after you have rebooted the robot. You can monitor this
by doing:

sudo tail -f /var/log/robot.log

You may see messages like the following:

[ WARN] [1554930321.086981030]: Updating wrist_roll_mcb from -1 to 101
[ INFO] [1554930321.087023328]: Updating board 44
[ WARN] [1554930321.094045845]: updating firmware loader for board 0x11
[ WARN] [1554930323.609072063]: updating firmware loader for board 0x11
[ WARN] [1554930323.614075007]: Unexpected response for board 17 : recv_len=20
→˓board_id=17 table_
addr=16 data_len=16
[ WARN] [1554930323.614149147]: Unexpected response for board 38 : recv_len=20
→˓board_id=38 table_
addr=16 data_len=16

If you see the second sort of message, the likely fix is to power cycle the robot again via rosrun
fetch_drivers charger_power reboot.

2. Verify that the robot can ping the mainboard and the laser:

ping 10.42.42.42 # mainboard
ping 10.42.42.10 # laser

If not, see Ensuring robot’s ethernet ports are configured correctly.

3. Verify that the Primesense camera is working (if working with a Fetch robot):

rostopic list head_camera | wc -l

This should output 32, if everything is working fine.

4. At this point, release the robot’s runstop button.

44 Chapter 7. ROS Melodic + Ubuntu 18.04



Fetch Robotics, Release Melodic

5. The gripper should now have power, so we should be able to ping it:

ping 10.42.42.43 # gripper

If the gripper does not respond, please contact support. We are aware of an issue affecting some robots, and are
gathering information to identify the cause and best solution.

6. The arm’s “gravity compensation” should now be working. You should be able to freely move the arm by hand.

7. If applicable, from your non-robot computer, restore the contents of /etc/ros/indigo to /etc/ros/
melodic on the robot:

scp fetch_robot_files.tar.gz fetch@fetchXXX:~/
ssh fetch@fetchXXX
sudo mkdir -p /etc/ros/melodic
tar -xzf ~/fetch_robot_files.tar.gz -C /etc/ros/melodic/

Important: You should modify /etc/ros/melodic/robot.launch to replace any instances of indigo
with melodic

As well, you can restore any other saved files to the robot.

This is the point at which some things may not work fully, e.g. if packages used in ROS Indigo need up-
dates/replacements for ROS Melodic.

1. Verify that calibration is installed: a date should be output if you run the following command:

fetch@fetch3:~$ calibrate_robot --date
2018-11-26 14:48:04

2. To restart the drivers so that your restored files are used, with the arm safely resting so that it won’t fall,
restart roscore:

sudo service roscore restart

8. Set up your teleop controller. By default, a fresh install will not have the service for either controller active, and
the user will need to enable the appropriate service. (Note, only one or the other can be set up at a time.)

• PS4: The PS4 controller is newly supported on our robots with 18.04. The PS4 controller works better
than the PS3 controller and is recommended. You can acquire one from e.g. Amazon. Note that third party
PS4 controllers may not work.

1. Pair the controller via the Bluetooth settings in Ubuntu. For more detail, see here.

2. Disconnect the controller by holding the middle button for 10 seconds.

3. Connect the controller by pressing the middle button and then waiting until the LED is blue and not
flashing.

4. You can verify that the controller is connected properly by watching the output of jstest /dev/
ps4joy and pressing buttons on the controller.

5. If you did keep your old /etc/ros/indigo/robot.launch and are switching to a PS4 controller, you will
need to:

1. Find and modify/add the following lines in /etc/ros/melodic/robot.launch:

- <include file="$(find freight_bringup)/launch/include/teleop.launch.
→˓xml" />
+ <include file="$(find freight_bringup)/launch/include/teleop.launch.
→˓xml">

(continues on next page)

7.3. Post-install Validation 45



Fetch Robotics, Release Melodic

(continued from previous page)

+ <arg name="ps4" value="true" />
+ </include>

2. Then, with the arm safely resting so that it won’t fall, restart roscore:

sudo service roscore restart

6. Monitoring /joy topic should similarly reflect inputs on the controller.

7. The controller should work to teleop the robot.

• PS3: Check whether your PS3 controller pairs and controls the robot:

1. You do not need to re-pair the controller, generally, it should still connect.

2. Connect the controller by pressing the center button. Note: LEDs will continually flash even when
the connection is successful.

3. You can verify that the controller is connected properly by watching the output of jstest /dev/
ps3joy and pressing buttons on the controller.

4. Monitoring /joy topic should now reflect inputs on the controller.

5. The controller should work to teleop the robot.

Important note: for 18.04 the robots have switched from using sixad to using PS3joy. While you do not
need to re-pair the controller to the computer, note that the utility for doing so is now located at /opt/
ros/melodic/lib/ps3joy/sixpair. Some other changes in behaviour you may see:

– Inputs may are sent from the PS3 controller once per second, unless motion is detected via the ac-
celerometer/gyro in the PS3 controller. This can result in jerky motion when using the controller.

– The LEDs on the PS3 controller will continually blink, even though it is connected.

9. At this point the robot is probably working fine and is ready for use! (Unless you have additional customizations
to restore)

7.4 Compatibility of Other Computers Used with the Robot

For working with a robot running ROS Melodic, we recommend using an 18.04 Ubuntu machine that also has ROS
Melodic installed.

• In order for the robot to appear correctly in RViz, you will want to:

– Ensure your computer is pointed at the packages.ros apt sources

– Install ros-melodic-fetch-description and ros-melodic-freight-description
packages. Addtionally you might want to install ros-melodic-fetch-tools.

– Ensure that these packages are included in your path (e.g. rospack find fetch_description
returns a path)

– Common gotcha on a new setup: If the robot model doesn’t appear in RViz at first, you may need to change
the “Fixed frame” from e.g. ‘map’ to ‘odom’.

46 Chapter 7. ROS Melodic + Ubuntu 18.04

https://github.com/fetchrobotics/fetch_tools


Fetch Robotics, Release Melodic

7.5 Not Supported: Upgrading from 14.04 to 18.04 (via 16.04)

Fetch Robotics does not recommend this approach and cannot provide support for this. However, if you desire to try
to upgrade, the following may be helpful:

• Back up files as described above, or even the full disk if you like.

• You cannot upgrade Ubuntu directly from 14.04 to 18.04. You must first upgrade to 16.04, then upgrade to
18.04. This can take a long time.

• You should review the postinstall script for fetch-melodic-config. It is not targeted at upgrading a
system, so additional tweaks may be required after installing it.

7.6 Appendices

7.6.1 Subsequent upgrade notes

When doing an upgrade of the robot, always follow the steps at Updating Your Robot.

Particularly if you upgraded to 18.04 prior to August 2019, when doing an upgrade of packages via sudo apt-get
upgrade, you may be prompted regarding changed files:

• /etc/default/grub

• /etc/udev/rules.d/99-ps3joy.rules

• /etc/udev/rules.d/99-ds4drv.rules

It is fine to select “install the package maintainer’s version.”

7.6.2 Accessing Boot Menu on Fetch Robots

You may need to access the boot menu in order to boot from a USB flash drive and install Ubuntu 18.04. Due to
different computer motherboards used in the past, Fetch research robots may be using one of two BIOS flavors. Older
robots use an MSI branded BIOS. Newer robots use American Megatrends Inc. (AMI).

These different BIOS types activate the boot media selection menu with different keys:

• If your robot shows the MSI splash screen at boot, press F11 to access the boot menu.

• If your robot shows the black AMI splash screen at boot (this lasts for about 1 second), press F7 to access the
boot menu.

If you fail to get into the boot menu, you can restart the computer and try again.

7.6.3 Disk filling issue

Some robots may encounter an issue where Gnome3 fills the disk by spamming /var/log/syslog. This issue has a fix
that is not available via apt yet, but can be manually done: see comments here.

7.5. Not Supported: Upgrading from 14.04 to 18.04 (via 16.04) 47

https://bugs.launchpad.net/ubuntu/+source/gnome-shell/+bug/1772677/comments/63


Fetch Robotics, Release Melodic

7.6.4 Ensuring robot’s ethernet ports are configured correctly

If you previously did the upgrade to Ubuntu 18.04 prior to August 2019, you should make the following fix to the
ethernet IP specifications to avoid issues with internet access/routing:

1. Edit /etc/netplan/99-fetch-ethernet.yaml and remove any lines referencing gateway4.

2. Run sudo netplan apply

3. Power cycle the robot (only needed if you’re actively having issues).

The robot has two ethernet ports on its computer. You can find more information on this at Computer Overview and
Configuration.

A problem you may encounter after getting 18.04 installed is if these two ports are “swapped”. This will cause the
robot computer to be unable to talk to the rest of its hardware. You can fix this in software or in hardware:

• Software: Edit /etc/udev/rules.d/70-persistent-net.rules and swap eth0 and eth1.
Restart the robot for the change to take effect.

• OR: Hardware: swap the two ethernet cables where they plug into the computer. This shouldn’t be needed, but
in case you do, you should expect to find a gray cable (internal communications) and a blue cable (external).
Typically, the blue goes to the top ethernet port, and the grey goes to the bottom.

Another issue you may encounter with 18.04 is if you are using the ethernet on the side access panel with a DHCP
setup. In some setups, the ethernet port may fail to be assigned an IP automatically. We recommend consulting IT for
help with this, if needed.

48 Chapter 7. ROS Melodic + Ubuntu 18.04



CHAPTER

EIGHT

TUTORIALS

8.1 Tutorial: Visualization

8.1.1 Visualizing with RVIZ

>$ export ROS_MASTER_URI=http://<robot_name_or_ip>:11311
>$ rosrun rviz rviz

Note: You will need a computer with ROS installed to properly communicate with the robot. Please consult the ROS
Wiki for more information. We strongly suggest an Ubuntu machine with ROS Melodic installed.

You can now manually set up your RVIZ visualization or re-run RVIZ with a configuration file using the command
line. The default .rviz configuration file for Fetch can be loaded using:

>$ roscd fetch_navigation/config
>$ export ROS_MASTER_URI=http://<robot_name_or_ip>:11311
>$ rviz -d navigation.rviz

49

http://wiki.ros.org/melodic/Installation
http://wiki.ros.org/melodic/Installation
http://gazebosim.org/tutorials?tut=drcsim_visualization&cat=drcsim#VisualizingtheRobotmodel


Fetch Robotics, Release Melodic

8.1.2 Using the Runtime Monitor

Fetch and Freight publish ROS diagnostics messages. These are human-readable messages that inform users of the
robot system state. The runtime_monitor, part of rqt_robot_plugins can be used to view diagnostics from your
desktop computer:

>$ export ROS_MASTER_URI=http://<robot_name_or_ip>:11311
>$ rosrun rqt_runtime_monitor rqt_runtime_monitor

The runtime monitor will have one entry per motor controller board (MCB), as well as one entry per breaker. Each of
these entries will be classified as either stale, an error, a warning, or OK. In the above image, the supply_breaker is
disabled because the robot is not plugged in – this is only a warning, and not actually an issue.

Common errors that can be detected are overly hot motors or breakers, breakers that have tripped. When the runstop
on Fetch is pressed, a number of breakers become disabled and the motor controller boards are turned off, causing
them to go stale. The below image shows what a runstopped Fetch might look like:

50 Chapter 8. Tutorials



Fetch Robotics, Release Melodic

8.1. Tutorial: Visualization 51



Fetch Robotics, Release Melodic

8.2 Tutorial: Gazebo Simulation

Fetch and Freight have simulated counterparts using the Gazebo Simulator which you can install locally on your
system.

The Construct Sim provides a way to simulate a Fetch in Gazebo via their cloud service using a single ROSJect link
in case you want to avoid the installation process.

8.2.1 Installation

Before installing the simulation environment, make sure your desktop is setup with a standard installation of ROS
Indigo on Ubuntu 14.04 or ROS Melodic on Ubuntu 18.04. Once your APT repositories are configured, you can
install the simulator:

>$ sudo apt-get update
>$ sudo apt-get install ros-$ROS_DISTRO-fetch-gazebo-demo

8.2.2 Starting the Simulator

Warning: Never run the simulator on the robot. Simulation requires that the ROS parameter use_sim_time be set
to true, which will cause the robot drivers to stop working correctly. In addition, be sure to never start the simulator
in a terminal that has the ROS_MASTER_URI set to your robot for the same reasons.

The fetch_gazebo and fetch_gazebo_demo packages provide the Gazebo environment for Fetch.
fetch_gazebo includes several launch files:

• simulation.launch spawns a robot in an empty world.

52 Chapter 8. Tutorials

http://gazebosim.org
https://rds.theconstructsim.com/tc_projects/use_project_share_link/4ba9621c-e546-4353-848e-dc7326c8e467
http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.ros.org/indigo/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu


Fetch Robotics, Release Melodic

• playground.launch spawns a robot inside a lab-like test environment. This environment has some tables with
items that may be picked up and manipulated. It also has a pre-made map which can be used to test out robot
navigation and some simple demonstrations of object grasping.

To start the simplest environment:

>$ roslaunch fetch_gazebo simulation.launch

Note that all of the environments will prepare the robot by tucking the arm and giving the head an initial command.

8.2.3 Simulating a Freight

Freight uses the same launch files as Fetch, simply pass the robot argument:

>$ roslaunch fetch_gazebo simulation.launch robot:=freight

8.2.4 Visualizing with RVIZ

Even though Gazebo has a graphical visualization, RVIZ is still the preferred tool for interacting with your robot.

>$ export ROS_MASTER_URI=http://<robot_name_or_ip>:11311
>$ rosrun rviz rviz

Note: You will need a computer with ROS installed to properly communicate with the robot. Please consult the ROS
Wiki for more information. We strongly suggest an Ubuntu machine with ROS Melodic installed.

You can now manually set up your RVIZ visualization or re-run RVIZ with a configuration file using the command
line. The default .rviz configuration file for Fetch can be loaded using:

8.2. Tutorial: Gazebo Simulation 53

http://wiki.ros.org/melodic/Installation
http://wiki.ros.org/melodic/Installation
http://gazebosim.org/tutorials?tut=drcsim_visualization&cat=drcsim#VisualizingtheRobotmodel


Fetch Robotics, Release Melodic

>$ roscd fetch_navigation/config
>$ export ROS_MASTER_URI=http://<robot_name_or_ip>:11311
>$ rviz -d navigation.rviz

8.2.5 Running the Mobile Manipulation Demo

There is a fully integrated demo showing navigation, perception and MoveIt! working together on the robot in simu-
lation. To run the demo, start Gazebo simulator with the playground:

>$ roslaunch fetch_gazebo playground.launch

Wait until the simulator is fully running and then run the demo launch file:

>$ roslaunch fetch_gazebo_demo demo.launch

This will start:

• fetch_nav.launch - this is the navigation stack with a pre-built map of the environment.

• move_group.launch - this is the MoveIt configuration which can plan for the movement of the arm.

• basic_grasping_perception - this is a simple demo found in the simple_grasping package which segments
objects on tables and computes grasps for them.

• demo.py - this our specific demo which navigates the robot from the starting pose in Gazebo to the table, raises
the torso, lowers the head to look at the table, and then runs perception to generate a goal for MoveIt. The arm
will then grasp the cube on the table, tuck the arm and lower the torso. Once the robot is back in this tucked
configuration, the navigation stack will be once again called to navigate into the room with the countertop where
the robot will place the cube on the other table.

54 Chapter 8. Tutorials



Fetch Robotics, Release Melodic

8.2.6 Launch it on ROSDS

As mentioned beforehand, you can run the whole simulation on the ROS Development Studio, by The Construct, with
a single click. The advantages include:

• No installation required

• Any operating system can be used to program Fetch robots with ROS

• You can start testing and programming Fetch robots in 30 seconds!

In case you want to try it, you can just press the Run on ROSDS button to start:

8.2. Tutorial: Gazebo Simulation 55

http://www.theconstructsim.com/rds-ros-development-studio/


Fetch Robotics, Release Melodic

8.2.7 Simulation vs. Real Robots

The simulated robot may not be identical to the real robot. In fact, the real robot is likely quite a bit better behaved.
Also:

• The simulator does not include the IMU. Therefore, there is also no base odometry fusion with IMU data, and
the base_controller directly publishes all required TF data directly.

• The simulated robot does not have the head_camera/depth/* topics due to limitations within the Gazebo plugins.

• The simulated robot arm is not as well tuned as the real robot. The real arm will not wobble the way the simulated
arm does when executing a trajectory. The simulated robot has also not been tuned with various payloads. It is
best used for examining the workspace of the robot, and not the actual controls-related performance of the arm.

• The fingers of the real robot gripper are driven by the same leadscrew, so the object will always be grasped in
the center of the gripper. With the simulated robot, the fingers are independently actuated, and so the object may
drift to one side.

8.3 Tutorial: Robot Teleop

8.3.1 Using the Robot Joystick

Each Fetch and Freight ship with a robot joystick. Whenever the robot drivers are running, so is joystick teleop. The
joystick is capable of controlling the movement of the robot base, torso, head and gripper.

Warning: Fetch robots use wireless controllers. As with any wireless technology, maximum range between
controller and robot can vary depending on environment. You should experiment with your robot to understand
the distance limit at which you can safely control your robot.

Note: If you are using the older PS3 controller a different version of this tutorial can be found here.

Note: To switch your robot to use a PS4 controller instead of a PS3 controller, see the instructions here.

56 Chapter 8. Tutorials

https://rds.theconstructsim.com/tc_projects/use_project_share_link/4ba9621c-e546-4353-848e-dc7326c8e467


Fetch Robotics, Release Melodic

8.3. Tutorial: Robot Teleop 57



Fetch Robotics, Release Melodic

Button # Function (details below)
0 Open gripper
1 Control robot turning
2 Control forward/backward driving
3 Close gripper
4 Disable motor position holding
5 Not used
6 Arm tuck
7 Not used
8 Head control deadman
9 Linear arm (“tooltip”) control
10 Primary deadman
11 Angular arm (“tooltip”) control
12 Torso up
13 Not used
14 Torso down
15 Not used
16 Pair/unpair with robot

To pair the controller with the robot, press the middle button (16) once the robot has powered on. The controller will
vibrate once successful. To unpair, hold the button for 10 s. The LED indicator on top will turn off.

To drive the robot base, hold the primary deadman button (button 10 above) and use the two joysticks. The left joystick
controls turning velocity while the right joystick controls forward velocity.

Warning: Whenever driving the robot, always lower the torso and tuck the arm to avoid potentially unstable
operation.

To control the head, release the primary deadman and hold the head deadman (button 8). The left joystick now controls
head pan while the right joystick controls head tilt.

To move the torso up, hold the primary deadman and press the triangle button (12). To move the torso down, hold the
primary deadman and press the X (14).

To close the gripper, hold the primary deadman and press the close button (3). To open, hold the primary deadman and
press the open button (0).

The Fetch arm/gripper can be teleoped by combining several inputs:

• Linear motion of the end effector: Primary deadman + Button 9 + joystick input

• Angular motion of the end effector: Primary deadman + Button 11 + joystick input

Some controllers, such as the arm and head controllers, will attempt to hold position indefinitely. Sometimes this is
not desired. Holding button (4) for 1 second will stop all controllers except the base controller and the arm gravity
compensation.

58 Chapter 8. Tutorials

https://github.com/fetchrobotics/fetch_robots/blob/melodic-devel/fetch_bringup/scripts/controller_reset.py


Fetch Robotics, Release Melodic

8.3.2 Moving the Base with your Keyboard

Note: You will need a computer with ROS installed to properly communicate with the robot. Please consult the ROS
Wiki for more information. We strongly suggest an Ubuntu machine with ROS Melodic installed.

To teleoperate the robot base in simulation, we recommend using the teleop_twist_keyboard.py script from
teleop_twist_keyboard package.

>$ export ROS_MASTER_URI=http://<robot_name_or_ip>:11311
>$ rosrun teleop_twist_keyboard teleop_twist_keyboard.py

8.3.3 Software Runstop

In addition to the runstop button on the side of the robot, similar software functionality is also available, allowing for
button presses on the PS4 controller or a program to disable the breakers. This functionality is available in release
0.7.3 of the fetch_bringup package. The teleop portion is disabled by default.

Using Software Runstop

To activate the software runstop, publish True to the /enable_software_runstop topic.

Alternately, with the teleop runstop enabled, pressing both of the right trigger buttons (buttons 9 and 11) will activate
the software runstop. The software_runstop.py script in fetch_bringup can be modified to change the button(s) for the
software runstop.

Once activated, the software runstop can be deactivated by (1) toggling the hardware runstop, or (2) disabling the
software runstop by passing False to the /enable_software_runstop topic.

Enable Teleop Software Runstop

Note: In order to edit the robot.launch file, you will need to use a terminal editor (such as nano or vim), or use the
-X flag with SSH to use a graphical editor (such as gedit). Additionally, the editor must be launched with sudo.
Instructions below use nano.

To enable the software runstop, first SSH into the robot, and then modify the robot drivers launch file to use it.

We need to modify the robot.launch file to pass the correct arg to the software runstop script:

>$ sudo nano /etc/ros/melodic/robot.launch

In this file there should be a Software Runstop entry near the end. By default this entry contains an args line, with a
value of “-a -b -g”. To add teleop control, add the “-t” flag as well. This section will then look like the below. If your
robot is an older one and does not have a Software Runstop entry, you will want to simply copy the block the below.

<!-- Software Runstop -->
<include file="$(find fetch_bringup)/launch/include/runstop.launch.xml">

<arg name="flags" value="-a -b -g -t" />
</include>

8.3. Tutorial: Robot Teleop 59

http://wiki.ros.org/melodic/Installation
http://wiki.ros.org/melodic/Installation
http://wiki.ros.org/teleop_twist_keyboard


Fetch Robotics, Release Melodic

Note that the -a, -b, -g flags correspond to letting the software runstop control the arm, base and gripper breakers,
respectively.

Additionally, if completely disabling the software runstop functionality is desired, the above section in robot.launch
can be commented out or removed.

Finally, restart the drivers so that our changes take effect:

>$ sudo service robot stop && sudo service robot start

8.3.4 Re-pairing Robot Joystick that Won’t Connect

For a Bluetooth PS4 controller, the controller can be re-paired through the Ubuntu Bluetooth settings. To put the
controller in pairing mode, press and hold the Share button, and then press and hold the center PS4 button for a second
and then release it, and then release the share button. The LED on the controller should start flashing twice, once per
second.

8.3.5 Using Deadzone Parameter to Correct Drift

Some controllers may have poorly-zeroed joysticks, meaning that they send a nonzero value when the joystick is
untouched and ought to send a zero value. This will be apparent if you press the deadman button on the controller, and
the robot slowly moves without any input to the joysticks.

This behavior can be compensated for by using a rosparameter: joy/deadzone (ROS docs), which defines the amount
by which the joystick has to move before it is considered to be off-center, specified relative to an axis normalized
between -1 and 1.

Add/set the parameter in /etc/ros/melodic/robot.launch:

<!-- Teleop -->
<include file="$(find fetch_bringup)/launch/include/teleop.launch.xml"/>
<param name="joy/deadzone" value="0.1"/>

You can inspect the output of rostopic echo /joy with the controller connected to choose an appropriate value
for your controller.

To test a value after making the above change, with the arm safely resting so that it won’t fall, restart roscore.:

sudo service roscore restart

8.4 Tutorial: Navigation

Once you have Fetch or Freight running, you can start navigating. Fetch and Freight ship with configurations for using
the ROS Navigation Stack. A number of tutorials related to navigation can be found in the documentation on the ROS
Wiki.

60 Chapter 8. Tutorials

http://wiki.ros.org/joy#Parameters
http://wiki.ros.org/navigation
http://wiki.ros.org/navigation


Fetch Robotics, Release Melodic

8.4.1 Running Navigation in Gazebo Simulation

To run navigation in simulation, launch the navigation launch file from the fetch_gazebo_demo package:

>$ roslaunch fetch_gazebo_demo fetch_nav.launch

8.4.2 Running Navigation on a Real Robot

When running navigation on a robot, first you will need to build a map, See the next section for a how-to. Then you
will need to supply the map to the navigation launch file from the fetch_navigation package:

>$ roslaunch fetch_navigation fetch_nav.launch map_file:=/path/to/map.yaml

8.4.3 Building A Map

The launch file for navigation in Gazebo depends on a pre-built map of the environment. In order to use navigation in
the real world, you will need to first build a map of your environment:

>$ roslaunch fetch_navigation build_map.launch

Once you launch build_map, you will want to tele-operate the robot the robot around and build the map, which can be
visualized in RVIZ.

Note: The build_map.launch file is not intended to be run at the same time as fetch_nav.launch

While driving the robot around, you can view the map in RVIZ. Once you are happy with the map, you can save the
map:

>$ rosrun map_server map_saver -f <map_directory/map_name>

The map saver will create two files in the specified map_directory. The directory must already exist. The two files
are map_name.pgm and map_name.yaml. The first is the map in a .pgm image format, and the second is a YAML
file that specifies metadata for the image. These files can then be served by the map_server:

>$ rosrun map_server map_server <map.yaml>

The fetch_nav.launch file used above launches an instance of map_server. It has three arguments which control the
behavior:

Argument Meaning
map_file YAML file containing map metadata
map_keepout_file Additional YAML file containing metadata for a keepout map
use_keepout Whether to load and use a keepout map (default: False)

You can either pass the arguments from the command line, like:

>$ roslaunch fetch_navigation fetch_nav.launch map_file:=/path/to/map.yaml

Or create a new launch file in your own package which includes launch file and passes in arguments:

8.4. Tutorial: Navigation 61



Fetch Robotics, Release Melodic

<launch>
<include file="$(find fetch_navigation)/launch/fetch_nav.launch" >
<arg name="map_file" value="$(find my_package)/maps/my_map.yaml" />
<arg name="map_keepout_file" value="$(find my_package)/maps/my_keepout_map.yaml" /

→˓>
<arg name="use_keepout" value="true" />

</include>
</launch>

The “keepout” map can be created by copying the YAML file of your saved map, editing the name of the .pgm file and
then copying the .pgm file. You can then open the .pgm file in an image editor, such as GIMP, and black out areas
that you do not want the robot to drive through. This must be done in a separate map that is only used for planning so
that the edits do not disturb the functionality of localization (AMCL).

8.4.4 Sending Waypoints

The easiest way to send a goal to the navigation stack is using RVIZ and the 2D Nav Goal button. See the tutorial
on using RVIZ with navigation in the RVIZ documentation

However, you probably want to program your robot. There is a tutorial on commanding the robot with C++. For
examples in Python, look at the demo.py code in the fetch_gazebo_demo package.

8.5 Tutorial: Manipulation

Once you have Fetch running, you can start moving the arm with MoveIt!

8.5.1 Getting Started Demo

The easiest way to run MoveIt! is to run the demo launch file, which does not require any simulator or robot and brings
up a fully configured RVIZ instance:

>$ roslaunch fetch_moveit_config demo.launch

Within this demo you can use the sliders of the joint state publisher window to move the joints to new starting positions
and use interactive markers to create new locations to plan to and from.

8.5.2 Running the Pick and Place Demo

See Running the Mobile Manipulation Demo.

8.5.3 Running MoveIt! on a Robot

To run MoveIt! on a real or simulated robot, launch the move_group.launch file from the fetch_moveit_config
package:

>$ roslaunch fetch_moveit_config move_group.launch

Once launched you can send commands to move the arm using the MoveIt! Rviz Plugin or use the programming
interface, move_group_interface, in either C++ or Python.

62 Chapter 8. Tutorials

http://wiki.ros.org/navigation/Tutorials/Using%20rviz%20with%20the%20Navigation%20Stack
http://wiki.ros.org/navigation/Tutorials/SendingSimpleGoals
http://docs.ros.org/indigo/api/moveit_ros_visualization/html/doc/tutorial.html
http://docs.ros.org/indigo/api/pr2_moveit_tutorials/html/planning/src/doc/move_group_interface_tutorial.html
http://docs.ros.org/indigo/api/pr2_moveit_tutorials/html/planning/scripts/doc/move_group_python_interface_tutorial.html


Fetch Robotics, Release Melodic

8.5.4 Simple MoveIt! Disco Example

This python script will run the robot through a simple disco dance motion.

#!/usr/bin/env python

# simple_disco.py: Move the fetch arm through a simple disco motion
import rospy
from moveit_msgs.msg import MoveItErrorCodes
from moveit_python import MoveGroupInterface, PlanningSceneInterface

# Note: fetch_moveit_config move_group.launch must be running
# Safety!: Do NOT run this script near people or objects.
# Safety!: There is NO perception.
# The ONLY objects the collision detection software is aware
# of are itself & the floor.
if __name__ == '__main__':

rospy.init_node("simple_disco")

# Create move group interface for a fetch robot
move_group = MoveGroupInterface("arm_with_torso", "base_link")

# Define ground plane
# This creates objects in the planning scene that mimic the ground
# If these were not in place gripper could hit the ground
planning_scene = PlanningSceneInterface("base_link")
planning_scene.removeCollisionObject("my_front_ground")
planning_scene.removeCollisionObject("my_back_ground")
planning_scene.removeCollisionObject("my_right_ground")
planning_scene.removeCollisionObject("my_left_ground")
planning_scene.addCube("my_front_ground", 2, 1.1, 0.0, -1.0)
planning_scene.addCube("my_back_ground", 2, -1.2, 0.0, -1.0)
planning_scene.addCube("my_left_ground", 2, 0.0, 1.2, -1.0)
planning_scene.addCube("my_right_ground", 2, 0.0, -1.2, -1.0)

# TF joint names
joint_names = ["torso_lift_joint", "shoulder_pan_joint",

"shoulder_lift_joint", "upperarm_roll_joint",
"elbow_flex_joint", "forearm_roll_joint",
"wrist_flex_joint", "wrist_roll_joint"]

# Lists of joint angles in the same order as in joint_names
disco_poses = [[0.0, 1.5, -0.6, 3.0, 1.0, 3.0, 1.0, 3.0],

[0.133, 0.8, 0.75, 0.0, -2.0, 0.0, 2.0, 0.0],
[0.266, -0.8, 0.0, 0.0, 2.0, 0.0, -2.0, 0.0],
[0.385, -1.5, 1.1, -3.0, -0.5, -3.0, -1.0, -3.0],
[0.266, -0.8, 0.0, 0.0, 2.0, 0.0, -2.0, 0.0],
[0.133, 0.8, 0.75, 0.0, -2.0, 0.0, 2.0, 0.0],
[0.0, 1.5, -0.6, 3.0, 1.0, 3.0, 1.0, 3.0]]

for pose in disco_poses:
if rospy.is_shutdown():

break

# Plans the joints in joint_names to angles in pose
move_group.moveToJointPosition(joint_names, pose, wait=False)

# Since we passed in wait=False above we need to wait here
move_group.get_move_action().wait_for_result()

(continues on next page)

8.5. Tutorial: Manipulation 63



Fetch Robotics, Release Melodic

(continued from previous page)

result = move_group.get_move_action().get_result()

if result:
# Checking the MoveItErrorCode
if result.error_code.val == MoveItErrorCodes.SUCCESS:

rospy.loginfo("Disco!")
else:

# If you get to this point please search for:
# moveit_msgs/MoveItErrorCodes.msg
rospy.logerr("Arm goal in state: %s",

move_group.get_move_action().get_state())
else:

rospy.logerr("MoveIt! failure no result returned.")

# This stops all arm movement goals
# It should be called when a program is exiting so movement stops
move_group.get_move_action().cancel_all_goals()

8.5.5 Simple MoveIt! Wave Example

This python script will cause the robot to do a simple “wave-like” motion until the script is stopped with ctrl-c

#!/usr/bin/env python

# wave.py: "Wave" the fetch gripper
import rospy
from moveit_msgs.msg import MoveItErrorCodes
from moveit_python import MoveGroupInterface, PlanningSceneInterface
from geometry_msgs.msg import PoseStamped, Pose, Point, Quaternion

# Note: fetch_moveit_config move_group.launch must be running
# Safety!: Do NOT run this script near people or objects.
# Safety!: There is NO perception.
# The ONLY objects the collision detection software is aware
# of are itself & the floor.
if __name__ == '__main__':

rospy.init_node("hi")

# Create move group interface for a fetch robot
move_group = MoveGroupInterface("arm_with_torso", "base_link")

# Define ground plane
# This creates objects in the planning scene that mimic the ground
# If these were not in place gripper could hit the ground
planning_scene = PlanningSceneInterface("base_link")
planning_scene.removeCollisionObject("my_front_ground")
planning_scene.removeCollisionObject("my_back_ground")
planning_scene.removeCollisionObject("my_right_ground")
planning_scene.removeCollisionObject("my_left_ground")
planning_scene.addCube("my_front_ground", 2, 1.1, 0.0, -1.0)
planning_scene.addCube("my_back_ground", 2, -1.2, 0.0, -1.0)
planning_scene.addCube("my_left_ground", 2, 0.0, 1.2, -1.0)
planning_scene.addCube("my_right_ground", 2, 0.0, -1.2, -1.0)

# This is the wrist link not the gripper itself

(continues on next page)

64 Chapter 8. Tutorials



Fetch Robotics, Release Melodic

(continued from previous page)

gripper_frame = 'wrist_roll_link'
# Position and rotation of two "wave end poses"
gripper_poses = [Pose(Point(0.042, 0.384, 1.826),

Quaternion(0.173, -0.693, -0.242, 0.657)),
Pose(Point(0.047, 0.545, 1.822),

Quaternion(-0.274, -0.701, 0.173, 0.635))]

# Construct a "pose_stamped" message as required by moveToPose
gripper_pose_stamped = PoseStamped()
gripper_pose_stamped.header.frame_id = 'base_link'

while not rospy.is_shutdown():
for pose in gripper_poses:

# Finish building the Pose_stamped message
# If the message stamp is not current it could be ignored
gripper_pose_stamped.header.stamp = rospy.Time.now()
# Set the message pose
gripper_pose_stamped.pose = pose

# Move gripper frame to the pose specified
move_group.moveToPose(gripper_pose_stamped, gripper_frame)
result = move_group.get_move_action().get_result()

if result:
# Checking the MoveItErrorCode
if result.error_code.val == MoveItErrorCodes.SUCCESS:

rospy.loginfo("Hello there!")
else:

# If you get to this point please search for:
# moveit_msgs/MoveItErrorCodes.msg
rospy.logerr("Arm goal in state: %s",

move_group.get_move_action().get_state())
else:

rospy.logerr("MoveIt! failure no result returned.")

# This stops all arm movement goals
# It should be called when a program is exiting so movement stops
move_group.get_move_action().cancel_all_goals()

8.5.6 More information and Tutorials on MoveIt!

General information, Documentation and Tutorials available at moveit.ros.org

8.6 Tutorial: Perception

8.6.1 Head Camera Topics

The API for the head camera is documented under Head Camera Interface.

Some resources for accessing and processing camera data are:

• OpenCV is a generic computer vision library which has good support within ROS.

• Point Cloud Library allows manipulation of 3-dimensional images, or point clouds.

8.6. Tutorial: Perception 65

http://moveit.ros.org/
http://moveit.ros.org/documentation/
http://moveit.ros.org/documentation/tutorials/
http://opencv.org/
http://pointclouds.org/


Fetch Robotics, Release Melodic

• cv_bridge is a ROS package that allows converting ROS image messages into OpenCV data structures in C++
or Python.

• pcl_conversions is a ROS package for converting between ROS PointCloud2 messages and PCL data types in
C++.

• pcl_ros is a ROS package that contains several nodelets for commonly used PCL components such as voxel grid
filters for downsampling a point cloud or pass through filters for filtering out data beyond a certain distance.

8.6.2 Running the Pick and Place Demo

See Running the Mobile Manipulation Demo.

8.7 Tutorial: Auto Docking

Fetch Robotics has released a ROS package for automatically docking your robot with a Fetch charging dock. This
package uses the scanning laser range finder to detect the profile of the charge dock and steers the robot onto the dock.
Since the profile of the charge dock must be clearly visible, it is important that there is separation between docks and
any sort of laser-height obstacle on either side of the dock.

Warning: Charge dock installation must follow the specifications!

8.7.1 Installing fetch_auto_dock

To install the package:

sudo apt-get update
sudo apt-get install ros-indigo-fetch-auto-dock

8.7.2 Running the Docking Node

To start the auto docking node in a demonstration mode:

roslaunch fetch_auto_dock auto_dock.launch

This will bring up three ROS nodes. The first ROS node is the auto docking action server. This node can be asked to
dock with a charging dock through a ROS action interface. A second and third nodes monitor the PS3 joystick and
can trigger docking and undocking as described below:

• To dock your robot, point the robot at the charge dock and press the “circle” button on the PS3 controller.
Docking works best when the robot is about 0.75-1.0 meters away from the dock and pointed directly at it,
however docking should work from a variety of angles.

• To undock your robot when it is on a charge dock, press the “square” button on the PS3 joystick and the robot
will back off the dock and then turn in place so it is pointed away from the charge dock.

Warning: The docking controller does not have collision avoidance. Do not leave obstacles on the charge dock.

66 Chapter 8. Tutorials

http://wiki.ros.org/cv_bridge
http://wiki.ros.org/pcl_conversions
http://wiki.ros.org/pcl_ros


Fetch Robotics, Release Melodic

8.7.3 Auto Docking Programmatically

The auto dock node exposes a ROS action interface which can be used to dock the robot. This action interface is also
used by the demonstration python script.

This action is in the dock namespace and accepts a fetch_auto_dock_msgs/Dock action message.

There are several fields in the goal:

• dock_pose is a geometry_msgs/PoseStamped message which specifies where the dock center is located. This
can be in any valid frame as the action server node will use TF to transform the pose into the odometry frame.

• use_move_base is not currently implemented.

The result includes a single boolean docked which tells whether the robot has actually docked and is charging.

The following Python code will dock the robot with a dock that is 1.0 meters in front of it:

#!/usr/bin/env python
import rospy
import actionlib
from fetch_auto_dock_msgs.msg import DockAction, DockGoal

# Create a ROS node
rospy.init_node("dock_the_robot")

# Create an action client
client = actionlib.SimpleActionClient("/dock", DockAction)
client.wait_for_server()

# Create and send a goal
goal = DockGoal()
goal.dock_pose.header.frame_id = "base_link"
goal.dock_pose.pose.position.x = 1.0
goal.dock_pose.pose.orientation.z = 1.0
client.send_goal(goal)

The fetch_auto_dock node also provides an undock action interface which can be used to undock the robot from the
charge dock. The goal to undock has a single field

• rotate_in_place if set to true, the robot will back off the dock and then rotate 180 degrees so it is facing
off the dock. This can be very useful since navigation probably cannot get the robot off the dock when it is
facing at the dock.

8.8 Tutorial: Calibrating Fetch

Calibrating your Fetch Research Edition Robot is essential to getting the best performance. Fetch Robotics recom-
mends re-calibrating the robot after every shipping or travel excursion your robot undertakes.

8.8. Tutorial: Calibrating Fetch 67

http://wiki.ros.org/actionlib/DetailedDescription#Action_Interface_.26_Transport_Layer
https://github.com/fetchrobotics/fetch_msgs/blob/master/fetch_auto_dock_msgs/action/Dock.action


Fetch Robotics, Release Melodic

8.8.1 Understanding Calibration

The fetch_calibration package provides a method of making sure that the hand-eye coordination of the robot is well
calibrated. Calibration involves:

• Moving the arm to a series of poses

• At each pose, recording the joint_angles reported by the drivers. Calibration then blinks the gripper LEDs
several times to find their pose in the camera frame and records it.

• Performing a non-linear optimization which adjusts joint offsets and the head camera pose to minimize the error
between the expected pose of the the LEDs based on projection of the kinematics of the arm and the actual pose
seen by the camera.

• Updating the URDF and robot launch files with newly determined offsets.

The Upstart Services that start the robot will use the launch file in /etc/ros/melodic/robot.launch. Therefore, the last
step in calibration is to update that launch file and restart the drivers. Currently, the following aspects are updated:

• The URDF file is copied to /etc/ros/melodic, and the name of the file is put into robot.launch. The calibration
offsets are updated in the URDF file.

• The camera calibration YAML files are copied to /etc/ros/melodic, and the name of the files are put into
robot.launch.

• The head_camera driver has two parameters, z_offset_mm and z_scale which are calibrated. Their updated
values are stored in robot.launch.

8.8.2 Calibrate Robot Tool

The fetch_calibration package provides a tool called calibrate_robot which fully automates tasks related to calibration.
Once you have sourced the ROS setup.bash, running calibrate_robot without any arguments will show the list of valid
arguments:

>$ calibrate_robot
usage: calibrate_robot [-h] [--arm] [--base] [--install] [--reset] [--restore]

[--date] [--directory DIRECTORY]

Calibrate the robot, update files in /etc/ros

optional arguments:
-h, --help show this help message and exit
--arm Capture arm/head calibration data
--base Capture base calibration data
--install Install new calibration to /etc/ros (restarts drivers)
--reset Reset the calibration to factory defaults (restarts

drivers)
--restore Restore the previous calibration
--date Get the timestamp of the current calibration
--directory DIRECTORY

Directory to load calibration from or backup to

A useful command to note is the –date option, which will return the date that the current calibration was generated (or
‘uncalibrated’ if the robot has not yet been calibrated):

>$ calibrate_robot --date
2015-06-06 23:20:18

68 Chapter 8. Tutorials



Fetch Robotics, Release Melodic

8.8.3 Running Calibration

Warning: Calibration will cause the arm to move through the environment. Raise the torso to full extension and
be sure that the robot has at least 1 meter of free space all around it.

The first step to calibrate the robot is to reset the calibration to factory defaults:

>$ calibrate_robot --reset

This command might ask for your password, as it requires sudo to update the files in /etc/ros/. This will also restart
the drivers to make the changes take effect.

Warning: When calibrating, make sure that no other applications are subscribed to the head_camera topics.
Other applications, even RVIZ, connecting to the head_camera driver between the restart of drivers and the start of
calibration may adversely affect the auto_exposure settings of the camera.

The robot is now ready to calibrate. The following command will move the arm through a series of poses (about 100
poses) and upon completion of the calibration will update the robot configuration in /etc/ros/melodic. This typically
takes about 10 minutes to complete:

>$ calibrate_robot --arm --install

Finally, after the new calibration has been installed into /etc/ros/melodic, you can view the calibration by opening
RVIZ and seeing that the robot model overlaps with the point cloud from the head camera. If for some reason, the
calibration is not good, you can restart from the –reset command or roll back to the previous calibration with:

>$ calibrate_robot --restore

8.8.4 Calibrating Fetch Torso

When the torso controller board is first powered, it uses measurements from two different position sensors to determine
the absolute starting position of the torso. Once the absolute starting position of the torso is determined, the position
measurement will retain millimeter precision as long torso remains powered.

To work properly, the two torso sensors must be calibrated together. If the sensors are not properly calibrated, the
calculation of the initial torso position could be incorrect in some situations. This problem is more likely to occur if
the torso is first powered when in the “up” position. A bad torso position should be easy to detect when using RVIZ
since the torso position shown in RVIZ will always be more than +/-10cm different than the true torso position.

The torso sensors are calibrated in production, so they will not usually need to be recalibrated. If there seems to be a
torso positioning problem, the torso calibration tool should be first used to verify the calibration of the torso.

In release 0.7.4 of fetch_drivers package there is a tool to verify or calibrate the torso sensors. The tool has two
options: verify and calibrate. The verify option will only verify that the calibration is good, it will not change any
stored calibration parameters. The calibrate option will calibrate the sensors and update the parameters stored on the
torso controller.

For both options, the torso will travel through its entire range of motion while sensor data is collected. While the tool
is being run, the robot drivers will be stopped and the robot arm will not hold its position. Because of this, the arm
should be tucked or soft fabric or cardboard should be placed between arm and base to avoid scratching any covers.

8.8. Tutorial: Calibrating Fetch 69



Fetch Robotics, Release Melodic

Torso Calibration Procedure

Warning: During torso calibration the arm will not hold position. Place cardboard or soft fabric between arm and
base to avoid scratching covers during data collection.

Follow these steps in order to verify or calibrate the torso position sensors:

1. Move torso to lowest position, and tuck the arm.

2. Place a protective barrier between the arm and top base cover.

3. Disable robot drivers by running : sudo service robot stop

4. Run torso calibration tool:

• To run calibration : rosrun fetch_drivers torso_calibrate calibrate

• OR to verify calibration : rosrun fetch_drivers torso_calibrate verify

6. Wait for torso to collect sensor data. The torso will move upwards in small increments through the entire range
of motion. A clicking sound will be produced by the torso while moving, and is normal.

7. Cycle Run-stop (optional). Sometimes tool will request that run-stop be cycled after it completes. Cycling
run-stop will cycle power to the torso controller board, and is required in some situations.

8. Once tool has completed, restart robot drivers with sudo service robot start

Calibration Output

Once the tool has completed the calibration procedure it will check the expected results of calibration. If everything
checks out, the torso_calibrate calibrate will output something similar to:

VERIFY PASSED : max sensor error of 0.0116824 is within acceptable limit

If there was a problem calculating good calibration parameters, the output might look like:

VERIFY FAILED : max sensor error of 0.0501323 is larger than acceptable limit of 0.04

In case of failure, the torso sensor may be malfunctioning or damaged and a support ticket should be created.

Note: The value for max sensor error is the mismatch between the two torso sensors. The accuracy of the torso
position measurement is unrelated to this value.

Output When Verifying New Torso Calibration

torso_calibrate verify will produce output stating whether sensors are well calibrated. If the sensor cali-
bration is good, then this command will output something similar to:

VERIFY PASSED : max sensor error of 0.0109411 is within acceptable limit

Otherwise it will produce output like:

VERIFY FAILED : max sensor error of 0.0501323 is larger than acceptable limit of 0.04

When verification fails, run calibration produce.

70 Chapter 8. Tutorials



Fetch Robotics, Release Melodic

8.9 Tutorial: Fetch Programming by Demonstration

The fetch_pbd package is based on PR2 Programming by Demonstration. This version is for Fetch. It will not work
on Freight because Freight does not have an arm.

The original PR2 Programming by Demonstration was done by Maya Cakmak and the Human-Centered Robotics Lab
at the University of Washington.

8.9.1 System Requirements

This PbD is designed for Ubuntu 14.04 and ROS Indigo.

8.9.2 Installing from Source

Clone the repository and build on the robot:

>$ cd ~/catkin_ws/src
>$ git clone https://github.com/fetchrobotics/fetch_pbd.git
>$ cd ~/catkin_ws
>$ catkin_make

8.9.3 Running

Run these commands on a terminal on the Fetch:

>$ source ~/catkin_ws/devel/setup.bash
>$ roslaunch fetch_pbd_interaction pbd.launch

You can run the backend without the “social gaze” head movements or without the sounds by passing arguments to
the launch file:

>$ source ~/catkin_ws/devel/setup.bash
>$ roslaunch fetch_pbd_interaction pbd.launch social_gaze:=false play_sound:=false

You can also pass arguments to the launch file to save your actions to a json file or load them from a json file. This
behaviour is a bit complicated. It is recommended that you specify the full path to files or else it will look in your
.ros folder. If you specify a from_file then actions will be loaded from that file. They will replace the ones in your
session database. Whatever was in your session database will get stored in a timestamped file in your .ros folder (not
overwritten). If you specify a to_file then whatever is in your current session file be saved to that file.

>$ source ~/catkin_ws/devel/setup.bash
>$ roslaunch fetch_pbd_interaction pbd.launch from_file:=/full/path/from.json to_
→˓file:=/full/path/to.json

8.9. Tutorial: Fetch Programming by Demonstration 71

https://github.com/fetchrobotics/fetch_pbd
https://github.com/PR2/pr2_pbd
http://www.mayacakmak.com/
https://hcrlab.cs.washington.edu


Fetch Robotics, Release Melodic

8.9.4 Using the GUI

In your browser go to ROBOT_HOSTNAME:8080 in your browser to use the GUI. This can be used on mobile as
well. The mobile version does not show the visualizer, but can be useful for saving/deleting

The main page lists all the available actions.

You can directly run/copy/delete actions from the main page. Or hit the “Edit” button to see more information on that
action.

On the “Current Action” screen, most of the buttons are pretty self-explanatory. You can execute the entire action
using the “Run” button at the bottom of the screen. This will execute all of the primitives in the order they appear in
the Primitive List. You can click on a specific primitive (either the marker or the list item), to highlight the primitive.

You can show/hide the markers for each primitive by clicking the marker icon for the primitive in the Primitive List.

You can change the order of the primitives by dragging them to a new position in the list.

You can edit the position and orientation of certain primitives by clicking the edit icon or by moving the interactive
marker.

You can change the frame that certain primitives are relative to by right-clicking the marker.

You can also change the name of the action.

8.9.5 Code Interface

You can also access the actions you’ve programmed through code. You still need to run pbd_backend.launch.

>$ source ~/catkin_ws/devel/setup.bash
>$ rosrun fetch_pbd_interaction demo.py

72 Chapter 8. Tutorials



Fetch Robotics, Release Melodic

8.9. Tutorial: Fetch Programming by Demonstration 73



Fetch Robotics, Release Melodic

74 Chapter 8. Tutorials



Fetch Robotics, Release Melodic

8.9. Tutorial: Fetch Programming by Demonstration 75



Fetch Robotics, Release Melodic

8.9.6 System Overview

Interaction Node: The pbd_interaction_node.py handles the interaction between speech/GUI and the rest of the
system. Changes happen through the update loop in interaction.py and also through the callbacks from speech/GUI
commands. interaction.py also subscribes to updates from the pbd_world_node.py, which notifies it of changes in
objects in the world. Through callbacks and the update loop, interaction.py hooks in to session.py. session.py handles
creating actions and primitives and saving them to the database.

Arm Control Node: The pbd_arm_control_node.py is how the robot’s arm is controlled to execute actions/primitives.
It provides a lower level service interface to move the arm. The interaction node interacts with this through the interface
in robot.py.

World Node: The pbd_world_node.py handles the robot’s perception of the world. Other nodes ask the world node
about the state of the world and can both send and subscribe to updates to the world. Its main function is to provide a
list of objects currently in the scene.

Social Gaze Node: The social_gaze_server.py handles the movements of the robot’s head. This is also controlled
through the robot.py interface. The sounds are also provided through this interface.

76 Chapter 8. Tutorials



CHAPTER

NINE

OTHER

9.1 API Overview

Fetch Robotics is committed to providing an exceptional out-of-the-box experience for new robot owners. One of the
ways in which we create a great experience is by using standard ROS interfaces. This means that code you might have
written for other robots in the past should be easily portable to your new robot.

Whenever possible, we have conformed to the ROS Enhancement Proposals (REPs). These documents provide the
foundation of standard ROS interfaces. In addition to REP-compatible interfaces, we have adopted a number of the
community-accepted standard interfaces, such as those provided by the control_msgs package.

9.1.1 Arm and Torso

The arm and torso of the robot are controlled by control_msgs/FollowJointTrajectory actions. This action interface is
the output of packages such as MoveIt, and allows the arm to execute a pre-defined trajectory. Three interfaces are
provided:

• arm_controller/follow_joint_trajectory to control just the seven joints of the arm.

• arm_with_torso_controller/follow_joint_trajectory to control the seven joints of the arm plus the torso.

• torso_controller/follow_joint_trajectory to control just the torso.

Only one controller is allowed to control a joint at a time.

Warning: Fetch is tuned to work with smooth paths. The tuning performs best when paths are properly smoothed
and timed, such as those generated from MoveIt! Fetch has a number of mechanisms in place to prevent damage
from improper trajectories. Improperly constructed paths may cause motor or breaker shutdown.

In addition to the trajectory controllers, the arm is always running a gravity compensation controller.

77

http://www.ros.org/reps/rep-0000.html
http://wiki.ros.org/control_msgs
http://docs.ros.org/api/control_msgs/html/action/FollowJointTrajectory.html
http://wiki.ros.org/actionlib/DetailedDescription#Action_Interface_.26_Transport_Layer


Fetch Robotics, Release Melodic

9.1.2 Base Interface

Support for mobile bases is quite standard and robust in ROS, however it is one of the older interfaces. As such, it is
one of the few interfaces which is not action-based.

The mobile base subscribes to base_controller/command, and accepts a geometry_msgs/Twist message.

Only two fields are used in the message:

• linear.x specifies the robot’s forward velocity

• angular.z specifies the robot’s turning velocity

User applications will typically not connect directly to base_controller/command, but rather to cmd_vel. A multi-
plexer is always running between cmd_vel/teleop and cmd_vel. Whenever the deadman on the robot controller is
held, cmd_vel/teleop will override cmd_vel. The advantage of having your application publish to cmd_vel rather than
directly to base_controller/command is that you can override bad commands by simply pressing the deadman on the
robot controller.

The base controller implements a speed reduction when in the proximity of obstacles. This will not entirely stop the
robot if it is about to hit something, but will prevent full speed collisions.

9.1.3 Head Interface

The head exposes two potential interfaces. The first is an ActionServer available on
head_controller/follow_joint_trajectory which follows a joint trajectory as with the arm and torso (described
above).

The second interface is unique to the head, and allows the user to easily point the head (and head sensors) at a point of
interest. This action-based interface is available on head_controller/point_head. It is of type control_msgs/PointHead.
Although the interface currently does not support any of the pointing_axis or pointing_frame fields, it
points the head_tilt_link (which is very near the camera optical axis) towards the target point to achieve a similar
effect. A min_duration or max_velocity can also be specified.

9.1.4 Gripper Interface

gripper_controller/gripper_action exposes a control_msgs/GripperCommand ActionServer. The gripper command
takes in position and effort as parameters. Generally, the gripper is commanded to a fully closed or fully
opened position, so effort is used to limit the maximum effort. As the gripper never fully reaches the closed
position, the grasp strength will be determined by the maximum effort.

9.1.5 Head Camera Interface

The head camera exposes several topics of interest:

• head_camera/depth_registered/points is a sensor_msgs/PointCloud2 which has both 3d and color data. It is
published at VGA resolution (640x480) at 15Hz.

• head_camera/depth_downsampled/points is a sensor_msgs/PointCloud2 which has only 3d data. It is published
at QQVGA (160x120) resolution at 15Hz and is intended primarily for use in navigation/moveit for obstacle
avoidance.

• head_camera/depth/image_raw is a sensor_msgs/Image. This is unit16 depth image (2D) in mm . It is published
at VGA resolution (640x480) at 15Hz.

• head_camera/depth/image is a sensor_msgs/Image. This is float depth image (2D) in m. It is published at VGA
resolution (640x480) at 15Hz.

78 Chapter 9. Other

http://docs.ros.org/api/geometry_msgs/html/msg/Twist.html
http://wiki.ros.org/actionlib#Client-Server_Interaction
http://docs.ros.org/api/control_msgs/html/action/PointHead.html
http://docs.ros.org/api/control_msgs/html/action/GripperCommand.html
http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html
http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html
http://docs.ros.org/api/sensor_msgs/html/msg/Image.html
http://docs.ros.org/api/sensor_msgs/html/msg/Image.html


Fetch Robotics, Release Melodic

• head_camera/rgb/image_raw is a sensor_msgs/Image. This is just the 2d color data. It is published at VGA
resolution (640x480) at 15Hz.

9.1.6 Laser Interface

base_scan is a sensor_msgs/LaserScan message published at 15Hz.

Note: the raw laser information as reported by the laser hardware is published to base_scan_raw. The information
published to base_scan is filtered to remove shadow points.

9.1.7 IMU Interface

imu is a sensor_msgs/Imu message published at 100Hz. This message contains the linear acceleration and rotational
velocities as measured by the IMU located in the base of the robot.

On Fetch robots, the gripper IMU publishes to gripper_imu. This is also a sensor_msgs/Imu message published at
100Hz.

The IMUs are not present in the simulated robot.

9.1.8 Resetting Breakers

There are 3 breakers governing power on the fetch. One each for the arm, gripper and base. If the motors are
commanded to perform beyond their limits they will shut down for safety. To reset them you will either need to toggle
the e-stop or use the following service calls:

• $ rosservice call /arm_breaker false && rosservice call /arm_breaker true

• $ rosservice call /base_breaker false && rosservice call /base_breaker true

• $ rosservice call /gripper_breaker false && rosservice call /gripper_breaker true

To query the current state of the breakers, you can inspect the output of the command rosrun fetch_drivers
read_board 0.

9.2 Release Notes

The following release notes detail the updates to ROS Melodic packages maintained by Fetch Robotics and available
at http://packages.ros.org. For more details on the changes that have occured in an individual package, please see the
CHANGELOG within the installed package.

For information on updating your robot to the latest packages, see Updating Your Robot.

Note: For ROS Indigo, packages are hosted at http://packages.fetchrobotics.com.

9.2. Release Notes 79

http://docs.ros.org/api/sensor_msgs/html/msg/Image.html
http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html
http://docs.ros.org/api/sensor_msgs/html/msg/Imu.html
http://docs.ros.org/api/sensor_msgs/html/msg/Imu.html
http://packages.ros.org
http://packages.fetchrobotics.com


Fetch Robotics, Release Melodic

9.2.1 September 10, 2019

This release adds a few fixes for Fetch and Freight with ROS Melodic.

• ROS Melodic robots now start a soundplay node on startup. This feature was initially omitted from
Melodic/18.04 support.

• The frame_id field in the /imu topic now publishes correctly.

• The robot drivers were updated to align with the power_msgs packages. The /battery_state topic now works
correctly.

Key Updated Fetch Packages:

• fetch-melodic-config: 0.2-0ubuntu1 -> 0.2-0ubuntu2

• freight-melodic-config: 0.2-0ubuntu1 -> 0.2-0ubuntu2

• ros-melodic-power-msgs: 0.3.0-0 -> 0.4.0-1

• ros-melodic-fetch-bringup: 0.8.7-1 -> 0.8.8-1

• ros-melodic-fetch-drivers: 0.8.7-1 -> 0.8.8-1

• ros-melodic-freight-bringup: 0.8.7-1 -> 0.8.8-1

A full list of updated/new Fetch packages can be found at discourse.ros.org.

9.2.2 August 9, 2019

This release adds support for Fetch and Freight using ROS Melodic on Ubuntu 18.04. ROS Indigo and Ubuntu 14.04
are EOL. Robots using Indigo should continue to work, but will not receive further updates. To upgrade your robot,
see these instructions.

• The default ROS Melodic Fetch and Freight configurations can be easily set up using the new automated installer
(this is a clean install, not an in-place upgrade). To upgrade your robot, see these instructions.

• fetch_teleop/bringup now includes PS4 controller support. See how to switch.

New Fetch Packages:

• fetch-melodic-config: 0.2-0ubuntu1 (replaces fetch-system-config)

• freight-melodic-config: 0.2-0ubuntu1 (replaces freight-system-config)

Updated Fetch Packages:

• ros-melodic-fetch-bringup: 0.8.6-0 -> 0.8.7-1

• ros-melodic-fetch-calibration: 0.8.1-0 -> 0.8.2-1

• ros-melodic-fetch-drivers: 0.8.6-0 -> 0.8.7-1

• ros-melodic-fetch-depth-layer: 0.8.1-0 -> 0.8.2-1

• ros-melodic-fetch-description: 0.8.1-0 -> 0.8.2-1

• ros-melodic-fetch-gazebo: 0.9.1-1 -> 0.9.2-1

• ros-melodic-fetch-ikfast-plugin: 0.8.1-0 -> 0.8.2-1

• ros-melodic-fetch-maps: 0.8.1-0 -> 0.8.2-1

• ros-melodic-fetch-moveit-config: 0.8.1-0 -> 0.8.2-1

• ros-melodic-fetch-navigation: 0.8.1-0 -> 0.8.2-1

80 Chapter 9. Other

http://wiki.ros.org/sound_play
https://discourse.ros.org/t/new-packagesg-for-melodic-2019-09-10/10615


Fetch Robotics, Release Melodic

• ros-melodic-fetch-teleop: 0.8.1-0 -> 0.8.2-1

• ros-melodic-freight-bringup: 0.8.6-0 -> 0.8.7-1

A full list of updated/new Fetch packages can be found at discourse.ros.org.

9.2.3 April 4, 2019

A limited release for ROS Melodic, in support of the FetchIt! challenge at ICRA 2019.

Updated Fetch Packages (indigo -> melodic):

• ros-melodic-fetch-bringup: 0.7.5-0 -> 0.8.6-0

• ros-melodic-fetch-calibration: 0.7.13-0 -> 0.8.1-0

• ros-melodic-fetch-drivers: 0.7.28-0 -> 0.8.6-0

• ros-melodic-fetch-depth-layer: 0.7.13-0 -> 0.8.1-0

• ros-melodic-fetch-description: 0.7.13-0 -> 0.8.1-0

• ros-melodic-fetch-gazebo: 0.7.1-0 -> 0.9.1-1

• ros-melodic-fetch-ikfast-plugin: 0.7.13-0 -> 0.8.1-0

• ros-melodic-fetch-maps: 0.7.13-0 -> 0.8.1-0

• ros-melodic-fetch-moveit-config: 0.7.13-0 -> 0.8.1-0

• ros-melodic-fetch-navigation: 0.7.13-0 -> 0.8.1-0

• ros-melodic-fetch-teleop: 0.7.13-0 -> 0.8.1-0

• ros-melodic-freight-bringup: 0.7.5-0 -> 0.8.6-0

• ros-melodic-robot-controllers: 0.5.3-0 -> 0.6.0-0

9.2.4 December 18, 2017

This sync includes new upstream ROS packages. Updated drivers improve battery balancing, which should improve
battery life. There are also a number of new features in this release:

• fetch_moveit_config now includes an IKFast solver.

• fetch_moveit_config now includes apply_planning_scene plugin by default.

• fetch_teleop/bringup now includes teleop for the arm and cartesian controllers.

• fetch_bringup now includes a diagnostics aggregator.

• fetch/freight-system-config now preserves certain ethernet network configurations.

Updated Fetch Packages:

• fetch-system-config: 0.8-8 -> 0.9-1

• freight-system-config: 0.8-8 -> 0.9-1

• ros-indigo-fetch-bringup: 0.7.3-0 -> 0.7.5-0

• ros-indigo-fetch-calibration: 0.7.9-0 -> 0.7.13-0

• ros-indigo-fetch-drivers: 0.7.15-0 -> 0.7.28-0

• ros-indigo-fetch-depth-layer: 0.7.9-0 -> 0.7.13-0

9.2. Release Notes 81

https://discourse.ros.org/t/preparing-for-melodic-sync-2019-08-12/10256
https://opensource.fetchrobotics.com


Fetch Robotics, Release Melodic

• ros-indigo-fetch-description: 0.7.9-0 -> 0.7.13-0

• ros-indigo-fetch-maps: 0.7.9-0 -> 0.7.13-0

• ros-indigo-fetch-moveit-config: 0.7.9-0 -> 0.7.13-0

• ros-indigo-fetch-navigation: 0.7.9-0 -> 0.7.13-0

• ros-indigo-fetch-teleop: 0.7.9-0 -> 0.7.13-0

• ros-indigo-freight-bringup: 0.7.3-0 -> 0.7.5-0

• ros-indigo-robot-controllers: 0.5.2-0 -> 0.5.3-0

New Fetch Packages:

• ros-indigo-fetch-ikfast-plugin: 0.7.13-0

A full list of new upstream packages can be found on discourse.ros.org

9.2.5 November 29, 2016

This sync includes new upstream ROS packages. In addition it includes an updated version of sixad that fixes an issue
with logs filling the disk. It is highly recommended that this is installed through the following commands:

sudo apt-get update
sudo apt-get install sixad

Updated drivers improve battery balancing, which should improve battery life. There are also a number of new features
in this release:

• The chrony time service is now installed by fetch-system-config.

• robot_controllers adds the ability to dynamically load controllers.

• fetch_bringup includes a software runstop feature that can turn your PS3 controller into a wireless runstop.

Updated Fetch Packages:

• fetch-system-config: 0.8-4 -> 0.8-8

• ros-indigo-fetch-bringup: 0.7.1-0 -> 0.7.3-0

• ros-indigo-fetch-drivers: 0.7.11-0 -> 0.7.15-0

• ros-indigo-fetch-depth-layer: 0.7.5-0 -> 0.7.9-0

• ros-indigo-fetch-description: 0.7.5-0 -> 0.7.9-0

• ros-indigo-fetch-maps: 0.7.5-0 -> 0.7.9-0

• ros-indigo-fetch-moveit-config: 0.7.5-0 -> 0.7.9-0

• ros-indigo-fetch-navigation: 0.7.5-0 -> 0.7.9-0

• ros-indigo-fetch-teleop: 0.7.5-0 -> 0.7.9-0

• ros-indigo-freight-bringup: 0.7.1-0 -> 0.7.3-0

• ros-indigo-robot-controllers: 0.5.0-0 -> 0.5.2-0

A full list of new upstream packages can be found on discourse.ros.org

82 Chapter 9. Other

https://discourse.ros.org/t/new-packages-for-indigo-2017-10-27/3030
https://github.com/fetchrobotics/robot_controllers/pull/23
http://discourse.ros.org/t/new-packages-for-indigo-2016-11-27/898


Fetch Robotics, Release Melodic

9.2.6 May 28, 2016

This sync includes new upstream ROS packages. Notably this release includes updates for a udev rule that maps the
PS3 controller to /dev/ps3joy, therefore it is important that you also install the latest fetch-system-config or freight-
system-config package depending on your robot model. The Updating Your Robot instructions have been updated to
note that the correct update command is now:

sudo apt-get update
sudo apt-get install --only-upgrade ros-indigo-* f.*-system-config
sudo service robot stop
sudo service robot start

New drivers improve charge time and performance. A number of improvements have been made to the
fetch_depth_layer including properly supporting deactivate/activate when plans are not in progress.

Updated Fetch Packages:

• fetch-system-config: 0.8-0 -> 0.8-4

• ros-indigo-fetch-bringup: 0.6.0-0 -> 0.7.1-0

• ros-indigo-fetch-drivers: 0.7.4-0 -> 0.7.11-0

• ros-indigo-fetch-depth-layer: 0.7.0-0 -> 0.7.5-0

• ros-indigo-fetch-description: 0.7.0-0 -> 0.7.5-0

• ros-indigo-fetch-gazebo: 0.7.0-0 -> 0.7.1-0

• ros-indigo-fetch-gazebo-demo: 0.7.0-0 -> 0.7.1-0

• ros-indigo-fetch-maps: 0.7.0-0 -> 0.7.5-0

• ros-indigo-fetch-moveit-config: 0.7.0-0 -> 0.7.5-0

• ros-indigo-fetch-navigation: 0.7.0-0 -> 0.7.5-0

• ros-indigo-fetch-teleop: 0.7.0-0 -> 0.7.5-0

• ros-indigo-freight-bringup: 0.6.0-0 -> 0.7.1-0

• ros-indigo-robot-controllers: 0.4.3-0 -> 0.5.0-0

A full list of new upstream packages can be found on the ROS mailing list

9.2.7 January 21, 2016

This sync includes new upstream ROS packages. New drivers include improvements to charge state estimation and a
tool for in-field calibration of the torso. Auto docking includes several fixes for TF-related errors, as well as a fix for
reliability when the odom frame and dock are aligned.

Updated Fetch Packages:

• ros-indigo-fetch-drivers: 0.7.3-0 -> 0.7.4-0

• ros-indigo-fetch-auto-dock: 0.1.0-0 -> 0.2.1-0

A full list of new upstream packages can be found on the ROS mailing list

9.2. Release Notes 83

http://lists.ros.org/pipermail/ros-users/2016-May/070011.html
http://lists.ros.org/pipermail/ros-users/2016-January/069795.html


Fetch Robotics, Release Melodic

9.2.8 November 23, 2015

This sync includes new upstream ROS packages as well as minor bug fixes and improvements to drivers. Notably, the
deadman must now be held while tucking the arm, this allows a user to stop the arm tucking should the robot collide
with an obstacle in the environment.

Of note, this release also fixes several inconsistencies in the wrist_flex range of the robot. If your robot appears to
have an overly limited wrist_flex range, we recommend recalibrating the robot from a clean URDF after updating your
packages.

Maps have been removed from the fetch_navigation package and moved to their own package, fetch_maps.

Updated Fetch Packages:

• ros-indigo-fetch-drivers: 0.7.1-0 -> 0.7.3-0

• ros-indigo-fetch-depth-layer: 0.6.2-0 -> 0.7.0-0

• ros-indigo-fetch-description: 0.6.2-0 -> 0.7.0-0

• ros-indigo-fetch-gazebo: 0.6.2-0 -> 0.7.0-0

• ros-indigo-fetch-gazebo-demo: 0.6.2-0 -> 0.7.0-0

• ros-indigo-fetch-moveit-config: 0.6.2-0 -> 0.7.0-0

• ros-indigo-fetch-navigation: 0.6.2-0 -> 0.7.0-0

• ros-indigo-fetch-teleop: 0.6.2-0 -> 0.7.0-0

New Fetch Packages:

• ros-indigo-fetch-maps: 0.7.0-0

A full list of new upstream packages can be found on the ROS mailing list

9.2.9 November 12, 2015

This sync includes new upstream ROS packages as well as the first release of auto docking.

Please note that the MD5 checksum for the dock action will have changed with this release.

Updated Fetch Packages:

• ros-indigo-fetch-drivers: 0.6.3-0 -> 0.7.1-0

• ros-indigo-fetch-auto-dock-msgs: 0.5.2-0 -> 0.6.0-0

• ros-indigo-fetch-driver-msgs: 0.5.2-0 -> 0.6.0-0

• ros-indigo-fetch-gazebo: 0.6.1-0 -> 0.6.2-0

• ros-indigo-fetch-gazebo-demo: 0.6.1-0 -> 0.6.2-0

New Fetch Packages:

• ros-indigo-fetch-auto-dock: 0.1.0

A full list of new upstream packages can be found on the ROS mailing list

84 Chapter 9. Other

http://lists.ros.org/pipermail/ros-users/2015-November/069765.html
http://lists.ros.org/pipermail/ros-users/2015-September/069629.html


Fetch Robotics, Release Melodic

9.2.10 August 5, 2015

This sync includes new upstream ROS packages as well as minor fixes to the URDF and calibration.

Updated Fetch Packages:

• ros-indigo-fetch-drivers: 0.6.1-0 -> 0.6.3-0

• ros-indigo-fetch-depth-layer: 0.6.1-0 -> 0.6.2-0

• ros-indigo-fetch-description: 0.6.1-0 -> 0.6.2-0

• ros-indigo-fetch-moveit-config: 0.6.1-0 -> 0.6.2-0

• ros-indigo-fetch-navigation: 0.6.1-0 -> 0.6.2-0

• ros-indigo-fetch-teleop: 0.6.1-0 -> 0.6.2-0

A full list of new upstream packages can be found on the ROS mailing list

9.2.11 July 9, 2015

This sync includes new upstream ROS packages as well as tuck arm functionality from the robot joystick. This release
also includes charge level estimates for Fetch and Freight robots.

Updated Fetch Packages:

• ros-indigo-fetch-drivers: 0.5.3-0 -> 0.6.1-0

• ros-indigo-fetch-depth-layer: 0.5.13-0 -> 0.6.1-0

• ros-indigo-fetch-description: 0.5.13-0 -> 0.6.1-0

• ros-indigo-fetch-driver-msgs: 0.5.1-0 -> 0.5.2-0

• ros-indigo-fetch-gazebo: 0.5.0-0 -> 0.6.1-0

• ros-indigo-fetch-gazebo-demo: 0.5.0-0 -> 0.6.1-0

• ros-indigo-fetch-moveit-config: 0.5.13-0 -> 0.6.1-0

• ros-indigo-fetch-navigation: 0.5.13-0 -> 0.6.1-0

• ros-indigo-fetch-teleop: 0.5.13-0 -> 0.6.1-0

• ros-indigo-robot-calibration: 0.4.0-0 -> 0.5.2-0

• ros-indigo-robot-calibration-msgs: 0.4.0-0 -> 0.5.2-0

New Fetch Packages:

• ros-indigo-fetch-auto-dock-msgs: 0.5.2-0

A full list of new upstream packages can be found on the ROS mailing list

9.2. Release Notes 85

http://lists.ros.org/pipermail/ros-users/2015-August/069564.html
http://lists.ros.org/pipermail/ros-users/2015-July/069516.html


Fetch Robotics, Release Melodic

9.2.12 June 8, 2015

First publicly available release.

New Fetch Packages:

• ros-indigo-fetch-drivers: 0.5.3-0

• ros-indigo-fetch-depth-layer: 0.5.13-0

• ros-indigo-fetch-description: 0.5.13-0

• ros-indigo-fetch-driver-msgs: 0.5.1-0

• ros-indigo-fetch-gazebo: 0.5.0-0

• ros-indigo-fetch-gazebo-demo: 0.5.0-0

• ros-indigo-fetch-moveit-config: 0.5.13-0

• ros-indigo-fetch-navigation: 0.5.13-0

• ros-indigo-fetch-teleop: 0.5.13-0

A full list of new upstream packages can be found on the ROS mailing list

9.3 Frequently Asked Questions

9.3.1 How can I cite Fetch or Freight in an Academic Paper?

We recommend citing our workshop paper on Fetch & Freight:

Fetch & Freight: Standard Platforms for Service Robot Applications
Melonee Wise, Michael Ferguson, Derek King, Eric Diehr and David Dymesich
Workshop on Autonomous Mobile Service Robots, held at the
2016 International Joint Conference on Artificial Intelligence, NYC, July 2016

9.3.2 Why won’t my robot do anything at all (charge, move, etc. . . )?

• Verify the red “breaker switch” on the back of the robot below the air vents is in the “ON” position

• If this did not solve your problem please contact Fetch Support

9.3.3 Why won’t my robot turn on when I push the power button?

• If the charging light (#6 in figure below) is red Please try Charging the robot

• If this did not solve your problem please contact Fetch Support

86 Chapter 9. Other

http://lists.ros.org/pipermail/ros-users/2015-June/069467.html
http://docs.fetchrobotics.com/FetchAndFreight2016.pdf


Fetch Robotics, Release Melodic

9.3. Frequently Asked Questions 87



Fetch Robotics, Release Melodic

9.3.4 Why won’t my robot move when I use my PS3/PS4 joystick?

• If ring around the on button (#5 in figure below) is not illuminated please press the power button to turn on your
robot (give it some time to boot and then try again)

• PS4 controller: If the LED on the front of the controller is not solid blue, then the controller is not connected.
Press the middle PS4 button to connect.

– If the PS4 controller won’t connect, you can try re-pairing it. See these instructions.

• PS3 controller: If there are no red lights illuminated on the front of the PS3 controller then press the round
button in the center of the controller to turn on the controller (when it is ready to use it will vibrate) (Red lights
will be in one of the 4 holes to the left of the charging port in the following picture.)

• Please verify that the runstop (seen below) has not been pressed.

– If it is pressed twist it to turn it off

88 Chapter 9. Other



Fetch Robotics, Release Melodic

• If this did not solve your problem please contact Fetch Support

9.3.5 The robot will not move and/or slows down near obstacles, why?

• Please be aware, The robot’s max speed is reduced when the laser sees an object directly in front of it. Despite
this reduction the robot will always be able to travel at least 0.1 m/s even when the robot is almost touching an
obstacle so it can not get locked down. This behavior is at the driver level.

• If you are autonomously navigating and the robot stops completely you should check your costmap and/or
navigation algorithms

• If you are using the controller, it is on/connected and the robot stops please contact Fetch Support

9.3.6 I just sent a trajectory command to the arm and now it won’t gravity compen-
sate, help?

• Please verify that the trajectory command you sent to the arm was smoothed and doesn’t exceed the veloc-
ity/acceleration limits of the arm. Otherwise when the arm exceeds its limits a breaker will trip cutting power to
the arm

– To reset the breakers please follow this guide (Resetting Breakers)

• If this did not solve your problem please contact Fetch Support

9.4 Issues and Support

9.4.1 When you encounter an issue

As a first step, we recommend checking out the FAQ.

9.4.2 Reporting software bugs

If you’ve identified a specific issue in the open source code from Fetch Robotics, Pull Requests with proposed fixes or
Issues describing the issue on Github are welcome.

9.4.3 Contacting Fetch Support

Reaching Fetch Support

When purchasing robots, customers will have accounts created on the Fetch Support Website. Logging in and creating
a ticket here is the preferred method for support requests.

If you did not receive this login information, or need to requesting additional research support logins, please reach out
to your sales contact for more information.

9.4. Issues and Support 89

http://support.fetchrobotics.com:8080/


Fetch Robotics, Release Melodic

How do I create a good support ticket?

Please note which robot you are working with (e.g. Fetch 4) and describe the issues you are seeing, as well as any
possibly related hardware modifications you have made. You can also attach the debug-snapshot zip file to help
debugging via the process below.

• Make sure the robot is not runstopped and then run the following commands on your local computer (Not the
robot!)

sudo apt update && sudo apt install ros-melodic-fetch-tools
declare -x ROS_MASTER_URI="http://*RobotHostNameGoesHere*:11311"
fetch debug-snapshot

• Create a new support ticket and attach the zip file that was created

• Clearly state problem you are having in the ticket so we can better serve you

90 Chapter 9. Other



CHAPTER

TEN

LEGAL

10.1 Notices

10.1.1 FCC Notice

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1)
This device may not cause harmful interference, and (2) this device must accept any interference received, including
interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15
of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the
equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency
energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to
radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at their own expense.

Contains Transmitter Module FCC ID: PD97260H

10.1.2 Copyright Notices for Open Source Software

Fetch Robotics uses open-source software in Fetch and Freight. This software is licensed by the rights holders under
the following licenses, among others: GNU General Public License (GPL2, GPL3), GNU Lesser Public License
(LGPL), MIT License, zlib License, Apache2 license, and various forms and derivatives of the BSD license.

There are thousands of files installed by the Ubuntu installer, see http://www.ubuntu.com/about/about-ubuntu/licensing
for details about licensing.

See the SICK TIM55x/56x/57x operating instructions for details of open source software usage in the SICK TIM571
scanning laser range finder.

10.1.3 Trademarks

Fetch, Freight, and Fetch Robotics are trademarks of Fetch Robotics Inc. Ubuntu is a trademark of Canonical Limited.
All other trademarks and trade names are the property of their respective holders

91

http://www.ubuntu.com/about/about-ubuntu/licensing


Fetch Robotics, Release Melodic

10.2 License

10.3 Indices and tables

• genindex

• modindex

• search

92 Chapter 10. Legal


	Introduction
	Before you Start

	Safety
	Safety Overview
	Design Features
	General Usage Guidelines
	Warning Labels

	Getting Started
	What’s In Box
	Running Fetch and Freight

	Robot Hardware Overview
	Mechanism Terminology
	Mechanical Overview
	Electrical Overview
	Motion Control
	Sensor Overview

	Computer Overview and Configuration
	Default User Account
	Creating User Accounts
	Networking
	Clock Synchronization
	Upstart Services
	Log Files
	Speakers and Audio

	Care And Feeding
	Charging
	Batteries
	Updating Your Robot
	Re-Setting up apt Sources
	Cleaning Your Robot

	ROS Melodic + Ubuntu 18.04
	Known issues
	Upgrading Your Robot to ROS Melodic + Ubuntu 18.04
	Post-install Validation
	Compatibility of Other Computers Used with the Robot
	Not Supported: Upgrading from 14.04 to 18.04 (via 16.04)
	Appendices

	Tutorials
	Tutorial: Visualization
	Tutorial: Gazebo Simulation
	Tutorial: Robot Teleop
	Tutorial: Navigation
	Tutorial: Manipulation
	Tutorial: Perception
	Tutorial: Auto Docking
	Tutorial: Calibrating Fetch
	Tutorial: Fetch Programming by Demonstration

	Other
	API Overview
	Release Notes
	Frequently Asked Questions
	Issues and Support

	Legal
	Notices
	License
	Indices and tables


